Modeling the influence of tooling on the final shape of polymer composite parts
DOI:
https://doi.org/10.7242/1999-6691/2016.9.2.13Keywords:
polymer composite material, laminate, tooling, hardening, resin shrinkage, shape distortion, residual deformation, theoretical study, numerical simulation of warpage, finite element method, thermal expansion coefficientAbstract
Theoretical comparison of mechanical models used to describe the curing process of a composite with thermosetting binder is given. An approximation of the experimental dependence of the elastic modulus of a binder on temperature is demonstrated for a number of models. Constitutive relations of CHILE and Svanberg models are implemented as self-made computational modules for a finite element analysis package. Simulation of the curing of a composite spar section is carried out taking into account the tooling body. The required composite properties were obtained by the homogenization method. The significant feature of the simulation is accounting for mechanical and thermal contacts between the part and the tooling, which changes its state during the solution process. A mechanical interaction model that considers the transition from slipping to sticking at binder's gelation point is proposed. Simulation of heating in an oven is accomplished by specifying the conditions of convection on the total free surface of the tooling and the part. For the curing cycle under consideration the dependence of the relative solution error on the value of the solution time step is obtained. Thus the optimal time step is chosen to minimize the computational cost and preserve the solution acceptable accuracy. This optimization is of importance because of long-duration simulations. The results of numerical simulation of a composite spar section are given. For tooling materials, steel, Invar, aluminum and composite were taken. Several types of deviations from the desired shape of the structure modeled were observed. It is shown that these deviations are caused by the binder shrinkage and the effect of thermal expansion of tooling, which contributes significantly to the distorted shape of a manufactured composite. The higher was the thermal expansion coefficient of tooling material, the higher distortions of the final structure were observed in numerical simulation. The simulations clearly demonstrate that the tooling made of both Invar and composite shows the best result in the context of the product quality.
Downloads
References
Seglov B.A., Safonov A.A. Teoreticeskie osnovy i prikladnye zadaci tehnologii kompozitov. - M.: Lenand, 2015. - 112 c.
2. White S.R., Hahn H.T. Process Modeling of composite materials: residual stress development during cure. Part I. Model formulation // J. Compos. Mater. - 1992. - Vol. 26, no. 16. - P. 2402-2422. DOI
3. Bogetti T.A., Gillespie J.W., Jr. Process-induced stress and deformation in thick-section thermoset composite laminates // J. Compos. Mater. - 1992. - Vol. 26, no. 5. - P. 626-660. DOI
4. White S.R., Kim Y.K. Process-induced residual stress analysis of AS4/3501-6 composite material // Mech. Compos. Mater. St. - 1998. - Vol. 5, no. 2. - P. 153-186. DOI
5. Zhu Q., Geubelle Ph.H., Li M., Tucker III Ch.L. Dimensional accuracy of thermoset composites: simulation of process-induced residual stresses // J. Compos. Mater. - 2001. - Vol. 35, no. 24. - P. 2171-2205. DOI
6. Prasatya P., McKenna G.B., Simon S.L. A viscoelastic model for predicting isotropic residual stresses in thermosetting materials: effects of processing parameters // J. Compos. Mater. - 2001. - Vol. 35, no. 10. - P. 826-848. DOI
7. Adolf D., Martin J.E. Calculation of stresses in crosslinking polymers // J. Compos. Mater. - 1996. - Vol. 30, no. 1. - P. 13-34. DOI
8. Fernlund G., Rahman N., Courdji R., Bresslauer M., Poursatip A., Willden K., Nelson K. Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts // Compos. Part A-Appl. S. - 2002. - Vol. 33, no. 3. - P. 341-351. DOI
9. Sunderland P., Yu W., Manson J.-A. A thermoviscoelastic analysis of process-induced internal stresses in thermoplastic matrix composites // Polym. Composite. - 2001. - Vol. 22, no. 5. - P. 579-592. DOI
10. Clifford S., Jansson N., Yu W., Michaud V., Manson J.-A. Thermoviscoelastic anisotropic analysis of process induced residual stresses and dimensional stability in real polymer matrix composite components // Compos. Part A-Appl. S. - 2006. - Vol. 37, no. 4. - P. 538-545. DOI
11. Huang C.K., Yang S.Y. Study on accuracy of angled advanced composite tools // Mater. Manuf. Process. - 1997. - Vol. 12, no. 3. - P. 473-486. DOI
12. Radford D.W., Rennick T.S. Separating sources of manufacturing distortion in laminated composites // J. Reinf. Plast. Comp. - 2000. - Vol. 19, no. 8. - P. 621-641. DOI
13. Albert C., Fernlund G. Spring-in and warpage of angled composite laminates // Compos. Sci. Technol. - 2002. - Vol. 62, no. 14. - P. 1895-1912. DOI
14. Tarsha-Kurdi K.E., Olivier P. Thermoviscoelastic analysis of residual curing stresses and the influence of autoclave pressure on these stresses in carbon/epoxy laminates // Compos. Sci. Technol. - 2002. - Vol. 62, no. 4. - P. 559-565. DOI
15. Holmberg J.A. Influence of chemical shrinkage on shape distortion of RTM composites // Proceedings of the 19th International SAMPE European Conference of the Society for the Advancement of Material and Process Engineering, Paris, France, 22-24 April, 1998. - P. 621-632.
16. Begisev V.P., Matveenko V.P., Piscov N.V., Sardakov I.N. Modelirovanie termomehaniceskih processov v kristallizuusemsa polimere // MTT. - 1997. - No 4. - S. 120-132. DOI
17. Zav’alova T.G., Trufanov N.A. Opredelausie sootnosenia dla vazkouprugogo tela v usloviah kristallizacii // PMTF. - 2005. - T. 46, No 4. - S. 78-87. DOI
18. Smetannikov O.U. Trufanov N.A. Cislennyj analiz tehnologiceskih i ostatocnyh naprazenij v stekluusihsa telah // Vycisl. meh. splos. sred. - 2008. - T. 1, No 1. - C. 92-108. DOI
19. Matveenko V.P., Smetannikov O.U., Trufanov N.M., Sardakov I.N. Termomehanika polimernyh materialov v usloviah relaksacionnogo perehoda. - M.: Fizmatlit, 2009. - 176 c.
20. Tihomirova K.A., Trufanov N.A., Sardakov I.N. Cislennoe i eksperimental’noe issledovanie termomehaniceskogo povedenia stekluusihsa polimerov v slucae bol’sih deformacij // Vycisl. meh. splos. sred. - 2013. - T. 6, No 4. - C. 475-482. DOI
21. Simon S.L., McKenna G.B., Sindt O. Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation // J. Appl. Polym. Sci. - 2000. - Vol. 76, no. 4. - P. 495-508. DOI
22. Svanberg J.M. Predictions of manufacturing induced shape distortions - high performance thermoset composites / PhD Dissertation. - Lulea: Lulea University of Technology, 2002. - 131 p. (URL: http://epubl.ltu.se/1402-1544/2002/40/LTU-DT-0240-SE.pdf).
23. Belov D.A. Makarenko I.V., Dunaev A.V., Babkin A.V., Solopchenko A.V., Yablokova M.Y., Kepman A.V., Tretyakov A.V., Ulyanov A.V., Gromashev A.G. Curing processes simulation of complex shape carbon fiber reinforced composite components produced by vacuum infusion // Polym. Composite. - 2015. DOI
24. Zarrelli M., Partridge I.K., D’Amore A. Warpage induced in bi-material specimens: Coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure // Compos. Part A-Appl. S. - 2006. - Vol. 37, no. 4. - P. 565-570. DOI
25. Johnston A., Vaziri R., Poursartip A. A plane strain model for process-induced deformation of laminated composite structures // J. Compos. Mater. - 2001. - Vol. 35, no. 16. - P. 1435-1469. DOI
26. Zobeiry N. Viscoelastic constitutive models for evaluation of residual stresses in thermoset composites during cure / PhD Dissertation. - Vancouver: The University of British Columbia, 2006. - 276 p.
27. Causse P., Ruiz E., Trochu F. Spring-in behavior of curved composites manufactured by Flexible Injection // Compos. Part A-Appl. S. - 2012. - Vol. 43, no. 11. - P. 1901-1913. DOI
28. Usakov A.E., Safonov A.A., Sergeicev I.V., Konstantinov A.U., Antonov F.K. Modelirovanie tehnologiceskih deformacij konstrukcionnyh elementov iz kompozitnyh materialov // Problemy masinostroenia i nadeznosti masin. - 2014. - No 1. - C. 46-52. DOI
29. Nielsen M.W., Hattel J.H., Andersen T.L., Branner K., Nielsen P.H. Experimental determination and numerical modelling of process induced strains and residual stresses in thick glass/epoxy laminate // Proceedings of the 15th European Conference on Composite Materials (ECCM 15), 24-28 June, 2012, Venice, Italy. - 1 USB, 2012. - 6 p.
30. Kim Y.K., White S.R. Viscoelastic analysis of processing-induced residual stresses in thick composite laminates // Mechanics of Advanced Materials and Structures. - 1997. - Vol. 4, no. 4. - P. 361-387. DOI
31. Yi S., Hilton H.H., Ahmad M.F. Cure-cycle simulations of composites with temperature- and cure-dependent anisotropic viscoelastic properties and stochastic delaminations // Mechanics of Advanced Materials and Structures. - 1998. - Vol. 5, no. 1. - P. 81-101. DOI
32. Hwang H.Y., Kim Y.K., Kwon Y.D., Choi W. Thermo-viscoelastic residual stress analysis of metal liner-inserted composite cylinders // KSME International Journal. - 2003. - Vol. 17, no. 2. - P. 171-180. DOI
33. Zocher M.A., Groves S.E., Allen D.H. A three-dimensional finite element formulation for thermoviscoelastic orthotropic media // Int. J. Numer. Meth. Eng. - 1997. - Vol. 40, no. 12. - P. 2267-2288. DOI
34. D’Amato E. Numerical modeling and experimental studies for shape and dimensional control in the curing process of textile composites // Compos. Struct. - 2007. - Vol. 81, no. 1. - P. 11-20. DOI
35. Huang X., Gillespie J.W., Bogetti T. Process induced stress for woven fabric thick section composite structures // Compos. Struct. - 2000. - Vol. 49, no. 3. - P. 303-312. DOI
36. Jun L., Feng Y.X., Hua L.Y., Zhi C.Z., Jun K.Z., Cai H.X., Di D. Thermo-viscoelastic analysis of the integrated T-shaped composite structures // Compos. Sci. Technol. - 2010. - Vol. 70, no. 10. - P. 1497-1503. DOI
37. Mulle M., Collombet F., Olivier P., Grunevald Y.-H. Assessment of cure residual strains through the thickness of carbon-epoxy laminates using FBGs, Part I: Elementary specimen // Compos. Part A-Appl. S. - 2009. - Vol. 40, no. 1. - P. 94-104. DOI
38. Konstantinov A.U., Safonov A.A. Matematiceskoe modelirovanie ostatocnyh tehnologiceskih deformacij pri pultruzii profilej sloznogo secenia iz polimernyh kompozicionnyh materialov // Problemy procnosti i plasticnosti. - 2014. - T. 76, No 4. - C. 310-319.
39. Fernlund G., Osooly A., Poursartip A., Vaziri R., Courdji R., Nelson K., George P., Hendrickson L., Griffith J. Finite element based prediction of process-induced deformation of autoclaved composite structures using 2D process analysis and 3D structural analysis // Compos. Struct. - 2003. - Vol. 62, no. 2. - P. 223-234. DOI
40. Pobedra B.E. Mehanika kompozicionnyh materialov. - M: Izd-vo Mosk. un-ta, 1984. - 336 s.
41. Semmler E., Michaeli W., Maurer S. Simulation of shrinkage and warpage for complex compression-moulded parts with reinforced thermoplastic material // Proceedings of the 42nd International SAMPE Symposium and Exhibition, Anaheim, California, May 4-8, 1997. - Vol. 42. - P. 1426-1438.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.