Colloid flow in a horizontal cell subjected to heating from sidewall

Authors

  • Ivan Nikolaevich Cherepanov Perm State University

DOI:

https://doi.org/10.7242/1999-6691/2016.9.2.12

Keywords:

colloid, sedimentation, convection, finite-difference method, solutal convection

Abstract

The influence of sedimentation on the convective flow of colloidal liquids filling a horizontal cell subjected to heating from sidewall is considered. The system of nonlinear equations is solved by the finite-difference method using explicit schemes. Three convective modes differing in the spatial structure and temporal behavior are distinguished. The transition between modes is accompanied by a jump in a dimensionless heat flux. Bifurcation diagrams for convective regimes are given. It is shown that at low temperature gradient there is a weak movement of a colloidal suspension, whose intensity is a few orders of magnitude smaller than that of the flow in a homogeneous fluid at equal parameters. In the flow of weak intensity, the concentration is redistributed so that the density gradient becomes substantially vertical, and the heat flux across the layer is absent. The transition from weak to strong current proceeds abruptly. A relationship between the threshold of transition from weak to intensive flow and the Boltzmann number characterizing the degree of gravitational stratification is determined. Another three-roll flow with intermediate intensity occurs as the Rayleigh number decreases. Stream-function and concentration fields are obtained for all the types of flows.

Downloads

Download data is not yet available.

References

Cross M.C., Hohenberg P.C. Pattern formation outside of equilibrium // Rev. Mod. Phys. - 1993. - Vol. 65. - P. 851-1112. DOI
2. Platten J.K., Legros J.C. Convection in liquids. - Springer-Verlag, 1984. - 680 p.
3. Birih R.V. , Rudakov R.N. Vlianie intensivnosti adsorbcionno-desorbcionnyh processov na koncentracionnuu konvekciu okolo kapli v gorizontal’nom kanale // Vycisl. meh. splos. sred.- 2010. - T. 3, No 1. - S. 24-31. DOI
4. Smorodin B.L., Lucke M. Convection in binary fluid mixtures with modulated heating // Phys. Rev. E. - 2009. - Vol. 79. - 026315. DOI
5. Smorodin B.L., Myznikova B.I., Legros J.C. Evolution of convective patterns in a binary-mixture layer subjected to a periodical change of the gravity field // Phys. Fluids. - 2008. - Vol. 20. - 094102. DOI
6. Donzelli G., Cerbino R., Vailati A. Bistable heat transfer in a nanofluid // Phys. Rev. Lett. - 2009. - Vol. 102. - 104503. DOI
7. Bernardin M., Comitani F., Vailati A. Tunable heat transfer with smart nanofluids // Phys. Rev. E. - 2012. - Vol. 85. - 066321. DOI
8. Shliomis M.I., Smorodin B.L., Kamiyama S. The onset of thermomagnetic convection in stratified ferrofluids // Philos. Mag. - 2003. - Vol. 83, no. 17-18. - P. 2139-2153. DOI
9. Shliomis M.I., Smorodin B.L. Onset of convection in colloids stratified by gravity // Phys. Rev. E. - 2005. - Vol. 71. - 036312. DOI
10. Smorodin B.L., Cherepanov I.N., Myznikova B.I., Shliomis M.I. Traveling-wave convection in colloids stratified by gravity // Phys. Rev. E. - 2011. - Vol. 84. - 026305. DOI
11. Ryskin A., Pleiner H. Influence of sedimentation on convective instabilities in colloidal suspensions // Int. J. Bifurcation Chaos. - 2010. - Vol. 20, no. 2. - P. 225-234. DOI
12. Bozhko A.A., Bulychev P.V., Putin G.F., Tynjala T. Spatio-temporal chaos in colloid convection // Fluid Dynamics. - 2007. - Vol. 42, no. 1. - P. 24-32. DOI
13. Lubimova T.P., Zubova N.A. Ustojcivost’ mehaniceskogo ravnovesia trojnoj smesi v kvadratnoj polosti pri vertikal’nom gradiente temperatury // Vycisl. meh. splos. sred. - 2014. - T. 7, No 2. - S. 200-207. DOI
14. Winkel F., Messlinger S., Schopf W., Rehberg I., Siebenburger M., Ballauff M. Thermal convection in a thermosensitive colloidal suspension // New J. Phys. - 2010. - Vol. 12. - 053003. DOI
15. Raikher Yu.L., Shliomis M.I. On the kinetics of establishment of the equilibrium concentration in a magnetic suspension // J. Magn. Magn. Mater. - 1993. - Vol. 122, no. 1-3. - P. 93-97. DOI
16. Smorodin B.L., Cherepanov I.N. Convection of colloidal suspensions stratified by thermodiffusion and gravity // The Eur. Phys. J. E. - 2014. - Vol. 37: 118. DOI
17. Rouc P. Vycislitel’naa gidrodinamika.- M.: Mir, 1980.- 618 c.
18. Ingel’ L.H. Mehanizm konvektivnoj neustojcivosti binarnoj smesi u vertikal’noj poverhnosti // Zurnal tehniceskoj fiziki.- 2009.- Tom 79, No 2.- S. 43-47. DOI
19. Gersuni G.Z., Zuhovickij E.M., Nepomnasij A.A. Ustojcivost’ konvektivnyh tecenij. - M.: Nauka, 1989. - 320 s.
20. Saposnikov I.G. K teorii konvektivnyh avlenij v binarnoj smesi // PMM.- 1953. - Tom. 17, No 5. - S. 604-606.
21. Marcuk G.I. Metody vycislitel’noj matematiki.- M.: Nauka, 1977.- 456 c.
22. Lipanov A.M., Karskanov S.A. Primenenie shem vysokogo poradka approksimacii pri modelirovanii processov tormozenia sverhzvukovyh tecenij v pramougol’nyh kanalah // Vycisl. meh. splos. sred. - 2013.- T. 6, No 3.- S. 292-299. DOI
23. Tolstyh A.I. Kompaktnye raznostnye shemy i ih primenenie v zadacah aerogidrodinamiki. - M.: Nauka, 1990. - 230 c.
24. Gluhov A.F., Demin V.A. Teplovaa konvekcia binarnyh smesej v vertikal’nyh sloah i kanalah pri podogreve snizu // Vestnik permskogo universiteta. Seria: Fizika. - 2009. - No 27(1).- S. 16-26.

Published

2016-06-30

Issue

Section

Articles

How to Cite

Cherepanov, I. N. (2016). Colloid flow in a horizontal cell subjected to heating from sidewall. Computational Continuum Mechanics, 9(2), 135-144. https://doi.org/10.7242/1999-6691/2016.9.2.12