Solution of the boundary-contact dynamic problem for strongly viscous incompressible inhomogeneous media in the unbounded region and its application to modeling the geodynamic conditions of the earth’s tectonosphere

Authors

  • Yuriy Vladislavovich Pyatakov Computing Center FEB RAS
  • Vladimir Yurievich Kosygin Computing Center FEB RAS

DOI:

https://doi.org/10.7242/1999-6691/2016.9.1.7

Keywords:

boundary-contact problem, integrated equation, weak feature, system of dynamic equations, double layer potential, strongly viscous medium, tectonosphere, contact area

Abstract

A mathematical formulation of the boundary-contact dynamic problem for the unbounded inhomogeneous region is presented. A highly viscous incompressible inhomogeneous medium is modeled as a set of disparate disjoint subregions, each having constant viscosity. The values of instantaneous velocity vector components and stresses are set to be continuous at the contact areas between the adjacent interconnecting subdomains. Since the boundary of the modeled region representing the unbounded medium is absent, it is assumed that the instantaneous velocity vector and pressure satisfy the diminishing condition at infinity. It is shown that a representation of the velocity component and pressure in the form of a sum of integral expressions for hydrodynamic potentials (volume, simple and double layers) allows one to reduce the solution of the contact problem in the unbounded region to the solution of the system of Fredholm integral equations of the second kind. Because the factors that stand in the system in front of the improper integrals are, in the absolute value, less than unity, then to find the numerical solution of the equations, we can apply a standard method of successive approximations. The solution of the boundary-contact problem is tested on a model example of a situation at which a convergent break begins to form in the Earth’s lithosphere.

Downloads

Download data is not yet available.

References

Cathles L.M. The viscosity of the Earth’s mantle. - Princeton, New Jersey: Princeton University Press, 1975. - 386 p.
2. Artuskov E.V. Geodinamika. - M.: Nauka, 1979. - 328 s.
3. Oxburgh E.R., Turcotte D.L. Mechanisms of continental drift // Rep. Prog. Phys. - 1978. - Vol. 41, no. 8. - P. 1249-1312. DOI
4. Schubert G. Subsolidus convection in the mantles of terrestrial planets // Ann. Rev. Earth Planet. Sci. - 1979. - Vol. 7. - P. 289-342. DOI
5. Sorohtin O.G. Global’naa evolucia Zemli. - M.: Nauka, 1974. - 184 s.
6. Vanpe J.M. Thermo-mechanical convection in a seduction zone and initiation of back-arcspreading // Ann. Geophys. - 1984. - Vol. 2, no. 3. - P. 343-352.
7. Cserepes L., Yuen D.A., Schroeder B.A. Effect of the mid-mantle viscosity and phase-transition structure on 3D mantle convection // Phys. Earth Planet. In. - 2000. - Vol. 118. no. 1-2. - P. 135-148. DOI
8. Nishimura K.A. A numerical study of mantle tectonic flow as relevant to the Cenozoic structural development of the East Asiatic transition zone // Bulletin of the Disaster Prevention Research Institute. - 1986. - Vol. 36, no. 3-4. - P. 113-135.
9. Kosygin V.U., Krasnyj M.L., Maslov L.A. Naprazenia v litosfere Kurilo-Kamcatskoj perehodnoj zony // Tihookeanskaa geologia. - 1986. - T. 5, No 1. - S. 3-6.
10. Kosygin V.U. Gravitacionnoe pole i plotnostnye modeli tektonosfery severo-zapada Tihogo okeana. - Vladivostok: DVO AN SSSR, 1991. - 201 s.
11. Kosygin V.U., Komova O.S., Maslov L.A. Geomehaniceskoe sostoanie tektonosfery severo-zapada Tihogo okeana po ee plotnostnym modelam // Tihookeanskaa geologia. - 1991. - T. 10, No 3. - C. 3-10.
12. Karakin A.V. Analiticeskoe resenie nekotoryh ploskih zadac konvekcii v mantii // Fizika Zemli. - 1985. - No 2. - C. 16-25.
13. Karakin A.V., Lobkovskij L.I. Mehanika razdvizenia okeanskoj litosfery. - M.: VINITI, 1984. - S. 63-151.
14. Maslov L.A., Komova O.S. Cislennoe modelirovanie glubinnyh geodinamiceskih processov v aktivnyh okrainah // Fizika Zemli. - 1990. - No 3. - C. 53-60.
15. Maslov L.A. Geodinamika litosfery Tihookeanskogo podviznogo poasa. - Vladivostok: Dal’nauka, 1995. - 200 c.
16. Ladyzenskaa O.A. Matematiceskie voprosy dinamiki vazkoj neszimaemoj zidkosti. - M.: Nauka, 1970. - 288 s.
17. Gunter N.M. Teoria potenciala i ee primenenie k osnovnym zadacam matematiceskoj fiziki. - M.: Izd-vo tehniko-teoreticeskoj literatury, 1953. - 416 s.
18. Trehmernye zadaci matematiceskoj teorii uprugosti i termouprugosti / Pod red. V.D. Kupradze. - M.: Nauka, 1976. - 664 s.
19. Kosygin V.U., Patakov U.V. Resenie zadaci dinamiki sil’no vazkih neszimaemyh sred i ego prilozenie k modelirovaniu naprazenno-deformirovannogo sostoania tektonosfery Zemli // Vycisl. meh. splos. sred. - 2011. - T. 4, No 4. - S. 42-51. DOI
20. Riss F., Sekefal’vi-Nad’ B. Lekcii po funkcional’nomu analizu. M.: Izd-vo IL, 1954. - 310 s.
21. Bahvalov N.S., Zidkov N.P., Kobel’kov G.M. Cislennye metody. - M.: BINOM. Laboratoria znanij, 2008. - 636 s.
22. Patakov U.V., Isaev V.I., Kosygin V.U. Metody teorii potenciala pri resenii pramyh zadac gravimetrii i geodinamiki trehmernyh neodnorodnyh sred // Izvestia TPU. - 2012. - T. 321, No 1. - S. 76-83.

Published

2016-03-30

Issue

Section

Articles

How to Cite

Pyatakov, Y. V., & Kosygin, V. Y. (2016). Solution of the boundary-contact dynamic problem for strongly viscous incompressible inhomogeneous media in the unbounded region and its application to modeling the geodynamic conditions of the earth’s tectonosphere. Computational Continuum Mechanics, 9(1), 73-83. https://doi.org/10.7242/1999-6691/2016.9.1.7