Investigation of deposition of nanofilms on a porous aluminium oxide substrate by mathematical modeling techniques
DOI:
https://doi.org/10.7242/1999-6691/2016.9.1.6Keywords:
porous alumina, nanofilms, simulation, modified embedded-atom method (MEAM), molecular dynamicsAbstract
The paper presents a formulation of the problem and the methods used to study the deposition of nanofilms on a porous alumina substrate. The equations of a modified embedded-atom method that form the basis for the many-particle interaction potential are described. Aurum, argentum, iron, gallium, germanium and palladium were used as the materials to be deposited. Various mechanisms involved in the occlusion of the pores of alumina substrate with these materials were determined. Different processes of interaction between the nanostructures were observed for different types of deposited atoms. Slight sagging of nanofilms occurred in the region of a pore. The iron atoms formed nanostructures in the air above the substrate. The coating substrate occurred on island basis. Small iron nanostructures on the substrate were gradually being consolidated and grouped into larger nanostructures. Generation of iron nanostructures within the pores was observed. In the process of deposition of gallium atoms, a pore was not completely occluded as well, and a nanofilm was formed on the substrate surface as separate areas. Small gallium nanoparticles were formed on the substrate surface. Palladium generated a uniform nanofilm with a slight sagging in the pore area. When palladium atoms were deposited directly over the hole, throughout the condensation phase one could observe a hole, which was not occluded during the modeling process. In all types of deposited atoms there were single atoms, which reached the bottom of the pores. The most complete and dense filling of pores was obtained in the course of epitaxy of gallium. Pores filled by atoms can be regarded as quantum dots and used to obtain optical and electrical effects. Recommendations for obtaining nanofilm materials of different structures are presented. Nanoscale film deposition techniques show promise for some specific manufacturing processes and can be used to predict the behavior of available nanofilm materials and to create new nanofilm materials.
Downloads
References
Mozalev A., Sakairi M., Saeki I., Takahashi H. Nucleation and growth of the nanostructured anodic oxides on tantalum and niobium under the porous alumina film // Electrochim. Acta. - 2003. - Vol. 48. - P. 3155-3170.
2. Lazaruk S.K., Kacuba P.S., Lesok A.A., Vysockij V.B. Vlianie lokal’noj naprazennosti elektriceskogo pola na formirovanie uporadocennoj struktury poristogo anodnogo oksida aluminia // ZTF. - 2015. - T. 8, No 9. - S. 86-90. DOI
3. Vojtovic I.D., Lebedeva T.S., Spilevoj P.B., Bednov N.V. Pokrytia iz nanoporistogo anodnogo oksida aluminia dla sensornyh primenenij // Nanosistemy, nanomaterialy, nanotehnologii. - 2014. - T. 12, No 1. - S. 169-180.
4. Vasiliev A.A., Pavelko R.G., Gogish-Klushin S.Yu., Kharitonov D.Yu., Gogish-Klushina O.S., Sokolov A.V., Pisliakov A.V., Samotaev N.N. Alumina MEMS platform for impulse semiconductor and IR optic gas sensors // Sensor. Actuat. B-Chem. - 2008. - Vol. 132, no. 1. - P. 216-223. DOI
5. Filak M.M., Kanygina O.N. Osobennosti formirovania anodnogo oksida aluminia v selocnyh elektrolitah // Vestnik OGU. - 2013. - No 1 (150). - S. 154-159.
6. Grynko D., Grytrsenko K., Lozovski V., Sopinskyy M., Strilchuk G. Optical absorption of nano-composite thin films of Au in Teflon // Materials Sciences and Applications. - 2010. - Vol. 1, no. 3. - P. 141-151. DOI
7. D’Addabbo A., Valentini A., Convertino A. Swelling of CFx and CFx(Au) films // J. Appl. Phys. - 2000. - Vol. 87, no. 1. - P. 2039-2043. DOI
8. Basim G.B., Karagoz A., Ozdemir Z. Metal oxide nano film characterization for CMP optimization // ECS Trans. - 2013. - Vol. 50, no. 39. - P. 3-7. DOI
9. Trakhtenberg L.I., Gerasimov G.N., Gromov V.F., Belysheva T.V., Ilegbusi O.J. Gas semiconducting sensors based on metal oxide nanocomposites // Journal of Materials Science Research. - 2012. - Vol. 1, no. 2. - P. 56-68. DOI
10. Golicyna O.M., Drozdin S.N., Necaev V.N., Viskovatyh A.V., Kaskarov V.M., Gridnev A.E., Cernysev V.V. Dielektriceskie svojstva poristyh oksidov aluminia i kremnia s vkluceniami triglicinsul’fata i ego modificirovannyh analogov // FTT. - 2013. - T. 55, No 3. - S. 479-484. DOI
11. Cukavin A.I., Valeev R.G., Bel’tukov A.N. Sintez nanorazmernyh struktur na osnove germania v matrice poristogo oksida aluminia // Vestnik Udmurtskogo universiteta. Seria: Fizika. Himia. - 2011. - No 4-2. - S. 3-7.
12. Valeev R.G., Bel’tukov A.N., Surnin D.V., Zakirova R.M., Vetoskin V.M. Luminescencia nanostruktur Ge v poristom Al2O3 // Himiceskaa fizika i mezoskopia. - 2014. - T. 16, No 1. - S. 115-118.
13. Valeev R.G., Romanov E.A., Hohrakov S.V. Luminescencia nanostruktur ZnS i ZnSe v poristyh matricah anodnogo oksida aluminia // Izvestia RAN. Seria fiziceskaa. - 2011. - T. 75, No 11. - S. 1573-1574. DOI
14. Medvedeva S.U. Polucenie opticeski aktivnyh struktur na osnove gidrookisi i oksida aluminia s dobavleniem ionov metallov // Trudy MFTI. - 2010. - T. 2, No 1 (5). - S. 37-42.
15. Vakhrushev A.V., Fedotov A.Y., Vakhrushev A.A., Golubchikov V.B., Givotkov A.V. Multilevel simulation of the processes of nanoaerosol formation. Part 1. Theory foundations // Nanomechanics Science and Technology. - 2011. - Vol. 2, no. 2. - P. 105-132. DOI
16. Vahrusev A.V., Fedotov A.U. Issledovanie processov formirovania kompozicionnyh nanocastic iz gazovoj fazy metodom matematiceskogo modelirovania // Himiceskaa fizika i mezoskopia. - 2007. - T. 9, No 4. - S. 333-347.
17. Vakhrouchev A.V. Simulation of nano-elements interactions and self-assembling // Modelling Simul. Mater. Sci. Eng. - 2006. - Vol. 14, no. 6. - P. 975-991. DOI
18. Vakhrouchev A.V. Computer simulation of nanoparticles formation, moving, interaction and self-organization // J. Phys.: Conf. Ser. - 2007. - Vol. 61, no. 1. - P. 26-30. DOI
19. Vahrusev A.V., Fedotov A.U. Issledovanie veroatnostnyh zakonov raspredelenia strukturnyh harakteristik nanocastic, modeliruemyh metodom molekularnoj dinamiki // Vycisl. meh. splos. sred. - 2009. - T. 2, No 2. - S. 14-21. DOI
20. Wadley H.N.G., Zhou X., Johnson R.A., Neurock M. Mechanisms, models and methods of vapor deposition // Prog. Mater. Sci. - 2001. - Vol. 46, no. 3-4. - P. 329-377. DOI
21. Song H., Ilegbusi O.J., Trakhtenberg L.I. Modeling vapor deposition of metal/semiconductor-polymer nanocomposite // Thin Solid Films. - 2005. - Vol. 476, no. 1. - P. 190-195. DOI
22. Lennard-Jones J.E. On the determination of molecular fields. II. From the equation of state of a gas // Proc. Roy. Soc. A. - 1924. - Vol. 106, no. 738. - P. 463-477. DOI
23. Lennard-Jones J.E. Wave functions of many-electron atoms // Math. Proc. Cambridge. - 1931. - Vol. 27, no. 3. - P. 469-480. DOI
24. Zinenko V.I., Sorokin B.P., Turcin P.P. Osnovy fiziki tverdogo tela. - M.: Fizmatlit, 2001. - 336 s.
25. Stoddard S.D., Ford J. Numerical experiments on the stochastic behavior of a Lennard-Jones gas system // Phys. Rev. A. - 1973. - Vol. 8, no. 3. - R. 1504-1512. DOI
26. Krivcov A.M., Krivcova N.V. Metod castic i ego ispol’zovanie v mehanike deformiruemogo tverdogo tela // Dal’nevostocnyj matematiceskij zurnal. - 2002. - T. 3, No 2. - S. 254-276.
27. Daw M.S., Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals // Phys. Rev. B. - 1984. - Vol. 29, no. 12. - P. 6443-6453. DOI
28. http://www.fisica.uniud.it/~ercolessi/ (data obrasenia: 24.02.2016).
29. Stillinger F.H., Weber T.A. Computer simulation of local order in condensed phases of silicon // Phys. Rev. B. - 1985. - Vol. 31, no. 8. - P. 5262-5271. DOI
30. Tersoff J. New empirical approach for the structure and energy of covalent systems // Phys. Rev. B. - 1988. - Vol. 37, no. 12. - P. 6991-7000. DOI
31. Daw M.S., Baskes M.I. Semiempirical, quantum mechanical calculations of hydrogen embrittlement in metals // Phys. Rev. Lett. - 1983. - Vol. 50, no. 17. - P. 1285-1288. DOI
32. Daw M.S. Model of metallic cohesion: The embedded-atom method // Phys. Rev. B. - 1989. - Vol. 39, no. 11. - P. 7441-7452. DOI
33. Baskes M.I. Modified embedded-atom potentials for cubic materials and impurities // Phys. Rev. B. - 1992. - Vol. 46, no. 5. - P. 2727-2742. DOI
34. Ruda M., Farkas D., Abriata J. Interatomic potentials for carbon interstitials in metals and intermetallics // Scripta Mater. - 2002. - Vol. 46, no. 5. - P. 349-355. DOI
35. Tomar V., Zhou M. Classical molecular-dynamics potential for the mechanical strength of nanocrystalline composite fcc Al+a-Fe2O3 // Phys. Rev. B. - 2006. - Vol. 73, no. 17. - 174116. DOI
36. Hohenberg P., Kohn W. Inhomogeneous electron gas // Phys. Rev. B. - 1964. - Vol. 136, no. 3. - P. 864-871. DOI
37. Kelchner C.L., Plimpton S.J., Hamilton J.C. Dislocation nucleation and defect structure during surface indentation // Phys. Rev. B. - 1998. - Vol. 58, no. 17. - P. 11085-11088. DOI
38. Vahrusev A.V., Fedotov A.U., Severuhin A.V., Suvorov S.V. Modelirovanie processov polucenia special’nyh nanostrukturnyh sloev v epitaksial’nyh strukturah dla utoncennyh fotoelektriceskih preobrazovatelej // Himiceskaa fizika i mezoskopia. - 2014. - T. 16, No 3. - S. 364-380.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.