On thermal diffusion and gauge transformations for thermodynamic fluxes and forces
DOI:
https://doi.org/10.7242/1999-6691/2016.9.1.5Keywords:
dilute solutions, thermodynamic transport cross-effects, thermal diffusionAbstract
We discuss the molecular diffusion transport in infinitely dilute liquid solutions under non-isothermal conditions. This discussion is motivated by an occurring misinterpretation of thermodynamic transport equations written in terms of chemical potential in the presence of temperature gradient. The transport equations contain the contributions owned by a gauge transformation related to the fact that chemical potential is determined up to the summand of form (AT + B) with arbitrary constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a constant value and B is owned by the potential energy invariance with respect to shifts by a constant value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our treatment is based on consideration of the entropy balance and suggests a promising hint for attempts of evaluation of the thermal diffusion constant from the first principles. We also discuss the impossibility of the «barodiffusion» for dilute solutions, understood in a sense of diffusion flux driven by the pressure gradient itself. When one speaks of «barodiffusion» terms in literature, these terms typically represent the drift in external potential force field (e.g., electric or gravitational fields), where in the final equations the specific force on molecules is substituted with an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the interpretation of the latter as barodiffusion is fragile and may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.
Downloads
References
Bird R.B., Stewart W.E., Lightfoot E.N. Transport Phenomena. - NY: Wiley, 2007. - 897 p.
2. Lubimova T.P., Parsakova A.N. Vlianie vrasatel’nyh vibracij na tecenia i teplomassoobmen pri vyrasivanii kristallov germania vertikal’nym metodom Bridzmena // Vycisl. meh. splos. sred. - 2008. - T. 1, No 1. - C. 57-67. DOI
3. Lubimova T.P., Zubova N.A. Ustojcivost’ mehaniceskogo ravnovesia trojnoj smesi v kvadratnoj polosti pri vertikal’nom gradiente temperatury // Vycisl. meh. splos. sred. - 2014. - T. 7, No 2. - S. 200-207. DOI
4. Goldobin D.S., Brilliantov N.V. Diffusive counter dispersion of mass in bubbly media // Phys. Rev. E. - 2011. - Vol. 84. - 056328. DOI
5. Goldobin D.S. Non-Fickian diffusion affects the relation between the salinity and hydrate capacity profiles in marine sediments // Comptes Rendus Mecanique. - 2013. - Vol. 341, no. 4-5. - P. 386-392. DOI
6. Goldobin D.S., Brilliantov N.V., Levesley J., Lovell M.A., Rochelle C.A., Jackson P.D., Haywood A.M., Hunter S.J., Rees J.G. Non-Fickian diffusion and the accumulation of methane bubbles in deep-water sediments // Eur. Phys. J. E. - 2014. - Vol. 37. - 45. DOI
7. Onsager L. Reciprocal relations in irreversible processes. I // Phys. Rev. - 1931. - Vol. 37. - P. 405-426. DOI
8. Onsager L. Reciprocal relations in irreversible processes. II // Phys. Rev. - 1931. - Vol. 38. - P. 2265-2279. DOI
9. De Groot S.R., Mazur P. Non-equilibrium thermodynamics. - NY: Dover, 1984. - 528 p.
10. Semenov S.N. Statistical thermodynamic expression for the Soret coefficient // Europhys. Lett. - 2010. - Vol. 90, no. 5. - 56002. DOI
11. Wittko G., Kohler W. Universal isotope effect in thermal diffusion of mixtures containing cyclohexane and cyclohexane-d12 // J. Chem. Phys. - 2005. - Vol. 123. - 014506. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.