Numerical investigation of the effect of boundary conditions on hydroelastic stability of two parallel plates interacting with a layer of ideal flowing fluid
DOI:
https://doi.org/10.7242/1999-6691/2015.8.4.36Keywords:
potential compressible fluid, parallel rectangular plates, hydroelastic stability, divergence, flutter, FEMAbstract
The paper studies the hydroelastic stability of two parallel identical rectangular plates interacting with a flowing fluid confined between them. General equations describing the behavior of ideal compressible liquid in the case of small perturbations are written in terms of the perturbation velocity potential and transformed using the Bubnov-Galerkin method. The small deformations of elastic plates are defined using the first-order shear deformation plate theory. A mathematical formulation of the dynamic problem for elastic structures is developed using the variational principle of virtual displacements, which takes into account the work done by the inertial forces and hydrodynamic pressure. The numerical solution of the problem is carried out in three-dimensional formulation by means of the finite element method. A stability criterion is based on the analysis of complex eigenvalues of the coupled system of equations obtained for different values of flow velocity. The existence of different types of instability has been shown depending on the combinations of the kinematic boundary conditions defined at the edges of both plates. We considered both the symmetric and asymmetric types of clamping. It has been found that the dependence of the lowest eigenfrequency of two parallel plates on the height of quiescent fluid is nonmonotonic with a pronounced peak. At the same time, critical velocities for instability change insignificantly if the distance between plates is greater than half of the maximum linear dimensions of the structure. It should be noted that the critical velocities of divergence increase monotonically with growth of the height of the fluid layer, but critical velocities for the onset of flutter instability have sharp jumps. The cause of these jumps is a change in the mode shapes at which the system loses stability.
Downloads
References
Paidoussis M.P. Fluid-structure interactions: slender structures and axial flow. - London: Academic Press, 2003. - Vol. 2. - 1040 p.
2. Stromquist W.K., Sisman O. High flux reactor fuel assemblies vibration and water flow. - 1948. - Report no. ORNL-50. DOI
3. Doan R.L. The engineering test reactor - A status report // Nucleonics. - 1958. - Vol. 16, no. 1. - P. 102-105.
4. Morehouse D.J., Christenson J.A. Vibration and collapse testing of SM-2 fuel elements. - 1960. - Report no. APAE-Memo-265. DOI
5. Smissaert G.E. Static and dynamic hydroelastic instabilities in MTR-type fuel elements. Part I. Introduction and experimental investigation // Nucl. Eng. Des. - 1968. - Vol. 7, no. 6. - P. 535-546. DOI
6. Miller D.R. Critical flow velocities for collapse of reactor parallel-plate fuel assemblies // J. Eng. Power. - 1960. - Vol. 82, no. 2. - P. 83-95. DOI
7. Johansson R.B. Hydraulic instability of reactor parallel plate fuel assemblies. - 1960. - Report no. KAPL-M-EJ-9. DOI
8. Scavuzzo R.J. Hydraulic instability of flat parallel-plate assemblies // Nucl. Sci. Eng. - 1965. - Vol. 21, no. 4. - P. 463-472.
9. Wambsganss M.W. Second-order effects as related to critical coolant flow velocities and reactor parallel plate fuel assemblies // Nucl. Eng. Des. - 1967. - Vol. 5, no. 3. - P. 268-276. DOI
10. Smissaert G.E. Static and dynamic hydroelastic instabilities in MTR-type fuel elements. Part II. Theoretical investigation and discussion // Nucl. Eng. Des. - 1969. - Vol. 9, no. 1. - P. 105-122. DOI
11. Woolstenhulme N.E. AFIP-6 MKII first cycle report. - 2012. - Report no. INL/EXT-12-25170. DOI
12. Li Y., Lu D., Zhang P., Liu L. Experimental investigation on fluid-structure interaction phenomenon caused by the flow through double-plate structure in a narrow channel // Nucl. Eng. Des. - 2012. - Vol. 248. - P. 66-71. DOI
13. Jeong K.-H., Yoo G.-H., Lee S.-C. Hydroelastic vibration of two identical rectangular plates // J. Sound Vib. - 2004. - Vol. 272, no. 3-5. - P. 539-555. DOI
14. Jeong K.-H., Kang H.-S. Free vibration of multiple rectangular plates coupled with a liquid // Int. J. Mech. Sci. - 2013. - Vol. 74. - P. 161-172. DOI
15. Guo C.Q., Paidoussis M.P. Analysis of hydroelastic instabilities of rectangular parallel-plate assemblies // J. Pressure Vessel Technol. - 2000. - Vol. 122, no. 4. - P. 502-508. DOI
16. Kerboua Y., Lakis A.A., Thomas M., Marcouiller L. Modeling of plates subjected to flowing fluid under various boundary conditions // Eng. Appl. Comp. Fluid Mech. - 2008. - Vol. 2, no. 4. - P. 525-539. DOI
17. Balint T.S., Lucey A.D. Instability of a cantilevered flexible plate in viscous channel flow // J. Fluid. Struct. - 2005. - Vol. 20, no. 7. - P. 893-912. DOI
18. Tang L., Paidoussis M.P. On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates in axial flow // J. Sound Vib. - 2007. - Vol. 305, no. 1-2. - P. 97-115. DOI
19. Howell R.M., Lucey A.D., Carpenter P.W., Pitman M.W. Interaction between a cantilevered-free flexible plate and ideal flow // J. Fluid. Struct. - 2009. - Vol. 25, no. 3. - P. 544-566. DOI
20. Il’gamov M.A. Kolebania uprugih obolocek, soderzasih zidkost’ i gaz. - M: Nauka, 1969. - 182 s.
21. Mokeyev V.V. On a method for vibration analysis of viscous compressible fluid-structure systems // Int. J. Numer. Meth. Eng. - 2004. - Vol. 59, no. 13. - P. 1703-1723. DOI
22. Vol’mir A.S. Nelinejnaa dinamika plastin i obolocek. - M: Nauka, 1972. - 432 s.
23. Zenkevic O.S. Metod konecnyh elementov v tehnike. - M: Mir, 1975. - 544 s.
24. Vol’mir A.S. Obolocki v potoke zidkosti i gaza. Zadaci gidrouprugosti. - M.: Nauka, 1979. - 320 s.
25. Lehoucq R.B., Sorensen D.C. Deflation techniques for an implicitly restarted Arnoldi iteration // SIAM J. Matrix Anal. Appl. - 1996. - Vol. 17, no. 4. - P. 789-821. DOI
26. Bockarev S.A., Matveenko V.P. Cislennoe issledovanie vliania granicnyh uslovij na dinamiku povedenia cilindriceskoj obolocki s protekausej zidkost’u // MTT. - 2008. - No 3. - S. 189-199. DOI
27. Goracek A., Zolotarev I. Vlianie zakreplenia kraev cilindriceskoj obolocki s protekausej zidkost’u na ee dinamiceskie harakteristiki // Prikladnaa mehanika. - 1984. - T. 20, No 8. - S. 88-98. DOI0
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.