Generation of large-scale structures and vortex systems in numerical experiments for rotating annular channels

Authors

  • Aleksey Evgenievich Gledzer A.M. Obukhov Institute of Atmospheric Physics RAS

DOI:

https://doi.org/10.7242/1999-6691/2015.8.4.35

Keywords:

annular channel, shallow-water equations, large scale flows, jets, sources-sinks, MHD-method, artificial viscosity

Abstract

Numerical methods for shallow-water equations describing flows in rotating annular channels and the results of numerical calculations are considered. The possibility of generation of global large scale flows, narrow jets and numerous small-scale vorticies in laboratory experiments is analyzed. Methods for inducing external effects in fluids involve a source-sink method and an MHD-method of interaction of electric current with magnetic field generated by a system of permanent magnets. A central-upwind method adopted to geophysical hydrodynamics is used in the numerical scheme. Initially the method was applied to shallow water equations in hydraulic problems: channels, dam break, rivers, and lakes. In geophysical hydrodynamics (in addtition to free water surface and bottom elevation) the main effects arise when external rotation is taken into account with appearence of numerous vorticies, jets and turbulence. So the basic foundations of the central-upwind method should be changed. Modifications concern the well-balanced scheme and interpolation method. In the numerical scheme the structure of artifical viscosity is considered. The main achievement of the modification is the possibility of controlling the numerical dissipation affecting the fluid motion variety. Hence, we obtain the active dynamics of vorticies transfomed into jets or large scale streams, which is more preferable for geophysical hydrodynamics. The numerical experiment provides opportunities for studying flows generated by numerous source-sinks, because the creation of an appropriate laboratory experimental setup presents some difficulties. The MHD-method can readily be realized in experiments to generate a large variety of flows and vortex currents in the channel by means of a relatively small number of magnets. Specifically, large scale circular flows, narrow jets and system of interacted vorticies were obtained in numerical experiments. For the purpose of experiments, the distribution of source-sinks and systems of permanent magnets over the bottom of annular channels is defined.

Downloads

Download data is not yet available.

References

Lesieur M. Turbulence in Fluids. - Dordrecht: Kluwer Academic Publishers, 1997. - 515 p.
2. Weeks E.R., Tian Y., Urbach J.S., Ide K., Swinney H.L., Ghil M. Transitions between blocked and zonal flows in a rotating annulus with topography // Science. - 1997. - Vol. 278, no. 5343. - P. 1598-1601. DOI
3. Rhines P.B. Jets and orography: idealized experiments with tip jets and Lighthill blocking // J. Atmos. Sci. - 2007. - Vol. 64. - P. 3627-3639. DOI
4. Espa St., Lacorata G., Di Nitto G. Anisotropic Lagrangian dispersion in rotating flows with a b effect // J. Phys. Oceanogr. - 2014. - Vol. 44. - P. 632-643. DOI
5. Espa St., Bordi I., Frisius Th., Fraedrichs K., Cenedese A., Sutera A. Zonal jets and cyclone-anticyclone asymmetry in decaying rotating turbulence: laboratory experiments and numerical simulations // Geophys. Astro. Fluid. - 2012. - Vol. 106, no. 6. - P. 557-573. DOI
6. Galperin B., Sukoriansky S., Dikovskaya N., Read P., Yamazaki Y., Wordsworth R. Anisotropic turbulence and zonal jets in rotating flows with a b-effect // Nonlin. Processes Geophys. - 2006. - Vol. 13. - P. 83-98. DOI
7. Baroud C.N., Plapp B.B., Swinney H.L. Scaling in three-dimensional and quasi-two-dimensional rotating turbulent flows // Phys. Fluids. - 2003. - Vol. 15, no. 8. - P. 2091-2104. DOI
8. Gledzer A.E., Gledzer E.B., Hapaev A.A., Cernous’ko U.L. Barotropnoe blokirovanie perenosa vihrej v laboratornyh eksperimentah s vrasausimsa kol’cevym kanalom // DAN. - 2012. - T. 443, No 3. - S. 309-314. DOI
9. Gledzer A.E., Gledzer E.B., Hapaev A.A., Cernous’ko U.L. Zonal’nye potoki, volny Rossbi i perenos vihrej v laboratornyh eksperimentah s vrasausimsa kol’cevym kanalom // Izvestia RAN. FAO. - 2014. - T. 50, No 2. - S. 143-155. DOI
10. Dolzanskij F.V. Osnovy geofiziceskoj gidrodinamiki. - M.: Fizmatlit, 2011. - 264 s.
11. Gledzer A.E., Gledzer E.B., Hapaev A.A., Chetiani O.G. Eksperimental’noe obnaruzenie blokirovania perenosa vihrej i voln Rossbi pri MGD-vozbuzdenii kvazidvumernyh tecenij vo vrasausemsa cilindriceskom sosude // Pis’ma v ZETF. - 2013. - T. 97, No 6. - S. 359-365. DOI
12. Smith C.A., Speer K.G. Multiple zonal jets in a differentially heated rotating annulus // J. Phys. Oceanogr. - 2014. - Vol. 44, P. 2273-2291. DOI
13. Xia H., Shats M.G., Falkovich G. Spectrally condensed turbulence in thin layer // Phys. Fluids. - 2009. - Vol. 21. - 125101. DOI
14. Gledzer A.E. Cislennaa model’ tecenij, generiruemyh istocnikami i stokami v kol’cevom vrasausemsa kanale // Izvestia RAN. FAO. - 2014. - T. 50, No 3. - C. 331-343. DOI
15. Toro E.F. Riemann solvers and numerical methods for fluid dynamics. A practical introduction. - Berlin: Springer-Verlag Heidelberg, 2009. - 718 p.
16. Kurganov A., Levy D. A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations // SIAM J. Sci. Comput. - 2000. - Vol. 22, no. 4. - P. 1461-1488. DOI
17. Kurganov A., Tadmor E. New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations // J. Comput. Phys. - 2000. - Vol. 160, no. 2. - P. 720-742. DOI
18. Jiang G.S., Levy D., Lin C.T., Osher S., Tadmor E. High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws // SIAM J. Numer. Anal. - 1998. - Vol. 35, no. 6. - P. 2147-2168. DOI
19. Kurganov A., Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations // J. Comput. Phys. - 2000. - Vol. 160, no. 1. - P. 241-282. DOI
20. Kurganov A., Noelle S., Petrova G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations // SIAM J. Sci. Comput. - 2001. - Vol. 23, no. 3. - P. 707-740. DOI
21. Harten A., Lax P.D., van Leer B. On upstream differencing and Godunov-type schmes for hyperbolic conservation laws // SIAM Rev. - 1983. - Vol. 25, no. 1. - P. 35-61. DOI
22. Kurganov A., Petrova G. Central-upwind schemes for two-layer shallow water equations // SIAM J. Sci. Comput. - 2009. - Vol. 31, no. 3. - P. 1742-1773. DOI
23. Kurganov A., Petrova G. Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws // Numer. Meth. Part. D. E. - 2005. - Vol. 21, no. 3. - P. 536-552. DOI
24. Kurganov A., Petrova G. A third-order semi-discrete genuinely multideminsional central scheme for hyperbolic conservation laws and related problems // Numerische Mathematik. - 2001. - Vol. 88, no. 4. - P. 683-729. DOI
25. Kurganov A., Petrova G. A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system // Commun. Math. Sci. - 2007. - Vol. 5, no. 1. - P. 133-160. DOI
26. Singh J., Altinakar M.S., Ding Y. Two-dimensional numerical modeling of dam-break flows over natural terrain using a central explicit scheme // Adv. Water Resour. - 2011. - Vol. 34, no. 10. - P. 1366-1375. DOI
27. Bermudez A., Vazquez M.E. Upwind methods for hyperbolic conservation laws with source terms // Comput. Fluids. - 1994. - Vol. 23, no. 8. - P. 1049-1071. DOI

Published

2015-12-30

Issue

Section

Articles

How to Cite

Gledzer, A. E. (2015). Generation of large-scale structures and vortex systems in numerical experiments for rotating annular channels. Computational Continuum Mechanics, 8(4), 408-422. https://doi.org/10.7242/1999-6691/2015.8.4.35