Numerical modeling of experiments by detecting of initial anisotropy type of elastic materials

Authors

  • Yuriy Vladimirovich Astapov Tula State University
  • Dmitriy Viktorovich Khristich Tula State University

DOI:

https://doi.org/10.7242/1999-6691/2015.8.4.33

Keywords:

anisotropic materials, main axes of anisotropy, program of mechanical experiments, numerical experiment, modeling

Abstract

In addition to a well-known term of the main axes of anisotropy of material a term of the canonical axes of anisotropy of material as the axes of a Cartesian rectangular coordinate system, in which tensors of elastic properties have the least number of non-zero independent components, is introduced. An experimental program, which allows one to establish the position of the canonical axes of anisotropy in the material, is developed. For definition of the position of the main axes of anisotropy it is necessary to perform three uniaxial compression experiments. For rhombic, monoclinic and triclinic materials the canonical axes of anisotropy coincide with the main axes of anisotropy. For trigonal, tetragonal and hexagonal materials one main axis of anisotropy and a canonical axis of anisotropy coinciding with it are determined definitely. To determine the orientation of the other two canonical axes of anisotropy, it is necessary to perform some tension-compression and shift experiments in the plane orthogonal to the defined main axis of anisotropy. In a cubic material the main axes of anisotropy are chosen coinciding with the axes of the laboratory coordinate system. To determine the position of the canonical axes of anisotropy with respect to the laboratory system axes it is enough to use the results of two uniaxial compression experiments. An experimental program for identification of the type of the initial elastic anisotropy of material is developed. This program includes tension-compression and shift tests in the canonical axes of anisotropy. The performed computer modeling of experiments by identification of the type of initial elastic anisotropy of material confirmed the applicability of the proposed experimental programs.

Downloads

Download data is not yet available.

References

Grin A.E., Adkins Dz. Bol’sie uprugie deformacii i nelinejnaa mehanika splosnoj sredy. - M.: Mir, 1965. - 456 s.
2. Landau L.D., Lifsic E.M. Teoreticeskaa fizika: Teoria uprugosti. - M.: Nauka, 1987. - T. 7. - 248 s.
3. Markin A.A., Sokolova M.U., Hristic D.V. Processy uprugoplasticeskogo konecnogo deformirovania. - Tula: Izd-vo TulGU, 2011. - 374 s.
4. Sirotin U.I., Saskol’skaa M.P. Osnovy kristallofiziki: uceb. posobie. - M.: Nauka, 1979. - 640 s.
5. Cernyh K.F. Vvedenie v anizotropnuu uprugost’. - M.: Nauka, 1988. - 192 s.
6. Ostrosablin N.I. Linejnye invariantnye neprivodimye razlozenia tenzora cetvertogo ranga modulej uprugosti // Dinamika splosnoj sredy. - 2002. - No 120. - S. 149-160.
7. Cvelodub I.U. K opredeleniu uprugih harakteristik odnorodnyh anizotropnyh tel // PMTF. - 1994. - T. 35, No 3. - S. 145-149.
8. Hayes M. A simple statical approach to the measurement of the elastic constants in anisotropic media // J. Mater. Sci. - 1969. - Vol. 4, no. 1. - P. 10-14. DOI
9. Jaric J.P. On the conditions for the existence of a plane of symmetry for anisotropic elastic material // Mech. Res. Commun. - 1994. - Vol. 21, no. 2. - P. 153-174. DOI
10. Norris A.N. On the acoustic determination of the elastic moduli of anisotropic solids and acoustic conditions for the existence of symmetry planes // Q. J. Mechanics Appl. Math. - 1989. - Vol. 42, no. 3. - P. 413-426. DOI
11. Markin A.A., Sokolova M.U. Opredelenie tipa ishodnoj anizotropii i rasprostranenie castnogo postulata Il’usina na nacal’no anizotropnye materialy // Ustojcivost’, plasticnost’, polzucest’ pri sloznom nagruzenii: sb. nauc. tr. - Tver’: Izd-vo TvGTU, 2000. - Vyp. 2. - S. 66-71.
12. Markin A.A., Sokolova M.U. Termomehaniceskie modeli obratimogo konecnogo deformirovania. - Tula: Izd-vo TulGU, 2010. - 268 s.
13. Novozilov V.V. Teoria uprugosti. - L.: Sudpromgiz, 1958. - 370 s.
14. Sokolova M.U., Hristic D.V., Generalova E.M. K voprosu ob opredelenii glavnyh osej anizotropii // Sovremennye problemy matematiki, mehaniki, informatiki: materialy Mezdunarodnoj naucnoj konferencii. - Tula: Izd-vo TulGU, 2008. - S. 300-301.
15. Hristic D.V, Kaumov R.A., Muhamedova I.Z. Programma eksperimentov po opredeleniu glavnyh osej anizotropii materiala // Izvestia KazGASU. - 2012. - No 3. - S. 216-224.
16. N’unhem R.E. Svojstva materialov. Anizotropia, simmetria, struktura. - M.-Izevsk: NIC <>, 2007. 652 s.
17. Pobedra B.E. Mehanika kompozicionnyh materialov. - M.: Izd-vo MGU, 1984. - 336 s.
18. Hristic D.V. K voprosu ob opredelenii glavnyh osej anizotropii materiala // Izvestia TulGU. Estestvennye nauki. - 2014. - No 2. - S. 203-213.
19. Hristic D.V. Kriterij eksperimental’noj identifikacii rombiceskogo, monoklinnogo i triklinnogo materialov // Izvestia TulGU. Estestvennye nauki. - 2013. - No 3. - S. 166-178.
20. Hristic D.V. Kriterij eksperimental’noj identifikacii geksagonal’nogo, trigonal’nogo i tetragonal’nogo materialov // Vestnik KGTU im. A.N. Tupoleva. - 2013. - No 2-1. - S. 67-72.
21. Hristic D.V. Kriterij eksperimental’noj identifikacii izotropnogo i kubiceskogo materialov // Izvestia TulGU. Estestvennye nauki. - 2012. - No 3. - S. 110-118.
22. Hristic D.V. Komp’uternoe modelirovanie eksperimentov po opredeleniu tipa nacal’noj anizotropii uprugih materialov // Izvestia TulGU. Estestvennye nauki. - 2014. - No 4. - S. 110-119.

Published

2015-12-30

Issue

Section

Articles

How to Cite

Astapov, Y. V., & Khristich, D. V. (2015). Numerical modeling of experiments by detecting of initial anisotropy type of elastic materials. Computational Continuum Mechanics, 8(4), 386-396. https://doi.org/10.7242/1999-6691/2015.8.4.33