Estimation of hydraulic resistance coefficient in smooth pipes
DOI:
https://doi.org/10.7242/1999-6691/2015.8.4.31Keywords:
hydraulic resistance coefficient, smooth pipesAbstract
A comparative analysis of the most widespread analytical relations used for estimation of coefficient in smooth pipes is made. A new simple relation that contains a minimum number of empirical parameters and allows evaluation of the hydraulic resistance coefficient in an explicit form is proposed. The effectiveness of the relation has been verified, and the obtained data have been compared with the results of experiments performed at Princeton and Oregon universities and published in 2004. The compatibility between the calculated and experimental results is analyzed in terms of average, median and maximum absolute values of their relative deflections. Simulations have shown that in spite of the fact that the data obtained during these experiments are close, the difference between the relations constructed using these results is significant. So, if the arithmetic means or medians of relative deflections are taken as the efficiency factor of these relations, the best coincidence with the experimental results from the Oregon experiment is ensured by the relation proposed by G. Barenblatt. Our relation gives slightly larger deflections. At the same time, a comparison with the results from the Princeton experiment indicates that it provides the lowest deflections for both the average and median values and the maximum values of absolute deviations among all the considered relations.
Downloads
References
Kozelkov A.S., Kurulin V.V., Puckova O.L., Laskin S.V. Modelirovanie turbulentnyh tecenij s ispol’zovaniem algebraiceskoj modeli rejnol’dsovyh naprazenij s universal’nymi pristenocnymi funkciami // Vycisl. meh. splos. sred. - 2014. - T. 7, No 1. - C. 40-51. DOI
2. Bisvas A.K. Celovek i voda. - L.: Gidrometeoizdat, 1975. - 288 s.
3. Forhgejmer F. Gidravlika. - M.-L.: ONTI NKTP, 1935. - 616 s.
4. Prandtl’ L. Gidroaeromehanika. - M.-Izevsk: NIC <>, 2000. - 574 s.
5. Gioia G., Bombardelli F.A. Scaling and similarity in rough channel flows // Phys. Rev. Lett. - 2002. - Vol. 88, no. 1. - 014501. DOI
6. Nikuradze J. Gesetzmassigkeiten der turbulenten Stromung in glatten Rohren // VDI. Forschungsheft. - 1932. - No. 356; Rus. per. v sb.: Problemy turbulentnosti / pod. red. M.A. Velikanova, N.T. Svejkovskogo. - M.-L.: ONTIM. - 1936. - S. 75-150.
7. Colebrook C.F. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe lows // J. of the ICE. - 1939. - Vol. 11, no. 4. - P. 133-156. DOI
8. Zagarola M.V., Smits A.J. Mean-flow scaling of turbulent pipe flow // J. Fluid Mech. - 1998. - Vol. 373. - P. 33-79. DOI
9. Vysockij L.I. Rekomendacii po ispol’zovaniu formul dla koefficienta Darsi pri rascete raspredelenia osrednennyh skorostej // Naucnyj zurnal RosNIIPM. - 2014. - No 4 (16). - S. 204-212.
10. Swanson C.J., Julian B., Ihas G.G., Donnelly R.J. Pipe flow measurements over a wide range of Reynolds numbers using liquid helium and various gases // J. Fluid Mech. - 2002. - Vol. 461. - P. 51-60. DOI
11. McKeon B.J., Swanson C.J., Zagarola M.V., Donnelly R.J., Smits A.J. Friction factors for smooth pipe flow // J. Fluid Mech. - 2004. - Vol. 511. - P. 41-44. DOI
12. Barenblatt G.I. Avtomodel’nye avlenia - analiz razmernostej i skejling: Uceb. posobie. - Dolgoprudnyj MO: Izdatel’skij Dom Intellekt, 2009. - 216 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.