Convective instability in two-layer system of reacting fluids with concentration-dependent diffusion

Authors

  • Elizaveta Valerievna Aitova Perm State Humanitarian Pedagogical University
  • Dmitriy Anatolievich Bratsun Perm National Research Polytechnic University
  • Konstantin Gennadievich Kostarev Institute of Continuous Media Mechanics UB RAS
  • Aleksey Ivanovic Mizev Institute of Continuous Media Mechanics UB RAS
  • Elena Aleksandrovna Mosheva Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2015.8.4.29

Keywords:

convective instability, neutralization reaction, nonlinear diffusion, miscible liquids

Abstract

We study theoretically and experimentally the development of convective instability in a two-layer system of miscible fluids placed in a narrow vertical gap. The upper and lower layers are formed with aqueous solutions of acid and base, respectively. When the layers are brought into contact, the frontal neutralization reaction begins. We have found experimentally a new type of convective instability which is characterized by the spatial localization and the periodicity of the structure observed for the first time in the miscible systems. We have tested a number of different acid-base systems and have found a similar patterning there. In our opinion, it may indicate that the discovered effect is of a general nature and should be taken into account in reaction-diffusion-convection problems as another tool with which the reaction can govern the movement of the reacting fluids. We have shown that, at least in one case (aqueous solutions of nitric acid and sodium hydroxide), a new type of instability called as the concentration-dependent diffusion convection is responsible for the onset of the fluid flow. It arises when the diffusion coefficients of species are different and depend on their concentrations. This type of instability can be attributed to a variety of double-diffusion convection. A mathematical model of the new phenomenon has been developed using the system of reaction-diffusion-convection equations written within a Hele-Shaw approximation. It is shown that the instability can be reproduced in the numerical experiment if only one takes into account the concentration-dependence of the diffusion coefficients of the reagents. The dynamics of the base state, its linear stability and non-linear development of the instability are presented. It is shown also that by varying the concentration of acid in the upper layer one can achieve the occurrence of chemo-convective solitary cell in the bulk of almost immobile fluid. Good agreement between the experimental data and the results of numerical simulations is observed.

Downloads

Download data is not yet available.

References

Quincke G. Ueber periodische Ausbreitung an Flussigkeitsoberflachen und dadurch hervorgerufene Bewegungserscheinungen // Annalen der Physik. - 1888. - Vol. 271, no. 12. - P. 580-642. DOI
2. Dupeyrat M., Nakache E. Direct conversion of chemical energy into mechanical energy at an oil water interface // Bioelectroch. Bioener. - 1978. - Vol. 5, no. 1. - P. 134-141. DOI
3. Kolesnikov A.K. Teplovoj vzryv v sloe s granicami raznoj temperatury pri poperecnom dvizenii reagenta // Fizika gorenia i vzryva. - 1984. - T. 20, No 3. - S. 64-65.
4. Thomson P.J., Batey W. Watson R.J. Interfacial activity in the two phase systems UO2(NO3)2/Pu(NO3)4/HNO3-H2O-TBP/OK // Extraction ’84. - 1984. - P. 231-244. DOI
5. Eckert K., Grahn A. Plume and finger regimes driven by an exothermic interfacial reaction // Phys. Rev. Lett. - 1999. - Vol. 82, no. 22. - P. 4436-4439. DOI
6. Bratsun D.A., De Wit A. Control of chemoconvective structures in a slab reactor // Theor. Math. Phys. - 2008. - Vol. 53, no. 2. - P. 146-153. DOI
7. Bratsun D.A., De Wit A. Buoyancy-driven pattern formation in reactive immiscible two-layer systems // Chem. Eng. Sci. - 2011. - Vol. 66, no. 22. - P. 5723-5734. DOI
8. Eckert K., Acker M., Shi Y. Chemical pattern formation driven by a neutralization reaction. Mechanism and basic features // Phys. Fluids. - 2004. - Vol. 16, no. 2. - P. 385-399. DOI
9. Bratsun D.A. On Rayleigh-Benard mechanism of alignment of salt fingers in reactive immiscible two-layer systems // Microgravity Sci. Tec. - 2014. - Vol. 26, no. 5. - P. 293-303. DOI
10. Shi Y., Eckert K. Orientation-dependent hydrodynamic instabilities from chemo-Marangoni cells to large scale interfacial deformations // Chinese J. Chem. Eng. - 2007. - Vol. 15, no. 5. - P. 748-753. DOI
11. Bratsun D.A., De Wit A. On Marangoni convective patterns driven by an exothermic chemical reaction in two-layer systems // Phys. Fluids. - 2004. - Vol. 16, no. 4. - P. 1082-1096. DOI
12. Karlov S.P., Kazenin D.A., Vyazmin A.V. The time evolution of chemo-gravitational convection on a brim meniscus of wetting // Physica A. - 2002. - Vol. 315, no. 1-2. - P. 236-242. DOI
13. Wylock C., Rednikov A., Haut B., Colinet P. Nonmonotonic Rayleigh-Taylor instabilities driven by gas-liquid CO2 chemisorption // J. Phys. Chem. B. - 2014. - Vol. 118, no. 38. - P. 11323-11329. DOI
14. Aitova E.V., Bracun D.A. Tocnoe resenie zadaci o hemokonvektivnoj ustojcivosti dvuhfaznoj sistemy zidkost’-gaz v prisutstvii adsorbiruemogo reagenta // Vestnik PNIPU. Mehanika. - 2013. - No 4. - S. 5-17.
15. Turner J.S. Double-diffusive phenomena // Annu. Rev. Fluid Mech. - 1974. - Vol. 6. - P. 37-54. DOI
16. Trevelyan P.M.J., Almarcha C., De Wit A. Buoyancy-driven instabilities around miscible A+B→C reaction fronts: A general classification // Phys. Rev. E. - 2015. - Vol. 91, no. 2. - 023001. DOI
17. Almarcha C., Trevelyan P.M.J., Grosfils P., De Wit A. Chemically driven hydrodynamic instabilities // Phys. Rev. Lett. - 2010. - Vol. 104, no. 4. - 044501. DOI
18. Almarcha C., R’Honi Y., De Decker Y., Trevelyan P.M.J, Eckert K., De Wit A. Convective mixing induced by acid-base reactions // J. Phys. Chem B. - 2011. - Vol. 115, no. 32. - P. 9739-9744. DOI
19. Carballido-Landeira J., Trevelyan P.M.J., Almarcha C., De Wit A. Mixed-mode instability of a miscible interface due to coupling between Rayleigh-Taylor and double-diffusive convective modes // Phys. Fluids. - 2013. - Vol. 25, no. 2. - 024107. DOI
20. Ash R., Espenhahn S.E. Transport through a slab membrane governed by a concentration-dependent diffusion coefficient. Numerical solution of the diffusion equation: ’early-time’ and ’√t’ procedures // J. Membrane Sci. - 2000. - Vol. 180, no. 1. - P. 133-146. DOI
21. Bowen W.R., Williams P.M. Prediction of the rate of cross-flow ultrafiltration of colloids with concentration-dependent diffusion coefficient and viscosity - theory and experiment // Chem. Eng. Sci. - 2001. - Vol. 56, no. 10. - P. 3083-3099. DOI
22. Bratsun D., Kostarev K., Mizev A., Mosheva E. Concentration-dependent diffusion instability in reactive miscible fluids // Phys. Rev. E. - 2015. - Vol. 92. - 011003. DOI
23. Crank J. The mathematics of diffusion. -New York: Oxford, University Press, 1975. - 414 p.
24. Chapman T.W. The transport properties of concentrated electrolytic solutions / PhD Dissertation in Chemical Engineering. - Berkeley: The University of California, 1967. - 404 p.
25. Wills G.B., Yeh H.-S. Diffusion coefficient of aqueous nitric acid at 25° as function of concentration from 0.1 to 1.0 M // J. Chem. Eng. Data. - 1971. - Vol. 16, no. 1. - P. 76-77. DOI
26. Nisancioglu K., Newman J. Diffusion in aqueous nitric acid solutions // AIChE J. - 1973. - Vol. 19, no. 4. - P. 797-801. DOI
27. Fary A.D. The diffusional properties of sodium hydroxide / PhD Dissertation in Physical Chemistry. - Appleton, Wisconsin: The Institute of Paper Chemistry, 1966. - 126 p.
28. Noulty R.A., Leaist D.G. Activity coefficients and diffusion coefficients of dilute aqueous solutions of lithium, sodium, and potassium hydroxides // J. Solution Chem. - 1984. - Vol. 13, no. 11. - P. 767-778. DOI
29. Harned H.S., Shropshire J.A. The diffusion and activity coefficient of sodium nitrate in dilute aqueous solutions at 25° // J. Am. Chem. Soc. - 1958. - Vol. 80, no. 11. - P. 2618-2619. DOI
30. Yeh H.-S., Wills G.B. Diffusion coefficient of sodium nitrate in aqueous solution at 25° as a function of concentration from 0.1 to 1.0 M // J. Chem. Eng. Data. - 1970. - Vol. 15, no. 1. - P. 187-189. DOI

Published

2015-12-30

Issue

Section

Articles

How to Cite

Aitova, E. V., Bratsun, D. A., Kostarev, K. G., Mizev, A. I., & Mosheva, E. A. (2015). Convective instability in two-layer system of reacting fluids with concentration-dependent diffusion. Computational Continuum Mechanics, 8(4), 345-358. https://doi.org/10.7242/1999-6691/2015.8.4.29