Study of plastic shear localization in aluminum alloys under dynamic loading

Authors

  • Dmitriy Alfredovich Bilalov Institute of Continuous Media Mechanics UB RAS
  • Mikhail Albertovich Sokovikov Institute of Continuous Media Mechanics UB RAS
  • Vasiliy Valerievich Chudinov Institute of Continuous Media Mechanics UB RAS
  • Vladimir Aleksandrovich Oborin Institute of Continuous Media Mechanics UB RAS
  • Yuriy Vitalievich Bayandin Institute of Continuous Media Mechanics UB RAS
  • Alena Ilinichna Terekhina Institute of Continuous Media Mechanics UB RAS
  • Oleg Borisovich Naimark Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2015.8.3.27

Keywords:

numerical modeling, plastic strain localization, microdefects, dynamic loading

Abstract

The paper presents an experimental and theoretical study of plastic shear localization mechanisms observed in AlMg6 alloy shear-compression specimens dynamically loaded during Hopkinson-Kolsky bar tests. The mechanisms of plastic shear instability are associated with collective effects in microshear ensembles in spatially localized areas. The lateral surface of specimens was studied in a real-time mode using a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time allowed us to trace the evolution of plastic strain localization. Based on the equations describing a relationship between non-equilibrium transitions and mechanisms of structural relaxation and plastic flow, numerical modeling of plastic shear localization was performed. A numerical experiment relevant to the loading scheme realized in our study was carried out using a system of constitutive equations constructed to take into account a relationship between the structural relaxation mechanisms caused by the collective behavior of microshears and the autowave modes of evolution of a localized plastic flow. Upon the experiment completion the microstructure of the saved specimens was analyzed using a New View-5010 microscope-interferometer. Constancy of the Hurst exponent is observed in a wide range of spatial scales after the dynamic deformation of samples. The Hurst exponent reflects the relationship between the behavior of defects and the surface roughness of different scale levels. For dynamically deformed specimens, constancy of the Hurst index was observed over a much wider range of spatial scales. This indicates more pronounced features of strain localization preceding adiabatic shear failure. These specific features can be caused by the collective multi-scale behavior of defects, which initiates a sharp decrease in stress relaxation time and consequently a localized plastic flow and generation of fracture nuclei by adiabatic shear. Infrared scanning in-situ of the strain localization zone and a consequent study of the defect structure confirmed our supposition that non-equilibrium transitions play a crucial role in defect ensembles during the evolution of a localized plastic flow.

Downloads

Download data is not yet available.

References

Giovanola J.H. Adiabatic shear banding under pure shear loading. Part I: direct observation of strain localization and energy dissipation measurements // Mech. Mater. - 1988. - Vol. 7, no. 1. - P. 59-71. DOI
2. Burns T.J. Does a shear band result from a thermal explosion? // Mech. Mater. - 1994. - Vol. 17, no. 2-3. - P. 261-271. DOI
3. Nemat-Nasser S., Li Y.F., Isaacs J.B. Experimental / computational evolution of flow stress at high strain rates with application to adiabatic shear banding // Mech. Mater. - 1994. - Vol. 17, no. 2-3. - P. 111-134. DOI
4. Bai Y., Xuc Q., Xu Y., Shen L. Characteristics and microstructure in the evolution of shear localization in Ti-6Al-4V alloy // Mech. Mater. - 1994. - Vol. 17, no. 2-3. - P. 155-164. DOI
5. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P. Meshless methods: An overview and recent developments // Comput. Method. Appl. M. - 1996. -Vol. 139, no. 1-4. - P. 3-47. DOI
6. Wright T.W., Ravichandran G. Canonical aspects of adiabatic shear bands // Int. J. Plasticity. - 1997. - Vol. 13. no. 4. - P. 309-325. DOI
7. Medyanik S.N., Liu W.K., Li S. On criteria for dynamic adiabatic shear band propagation // J. Mech. Phys. Solids. - 2007. - Vol. 55, no. 7. - P. 1439-1461. DOI
8. Rittel D., Ravichandran G., Venkert A. The mechanical response of pure iron at high strain rates under dominant shear // Mater. Sci. Eng. - 2006. - Vol. 432, no. 1-2. - P. 191-201. DOI
9. Rittel D., Wang Z.G., Merzer M. Adiabatic shear failure and dynamic stored energy of cold work // Phys. Rev. Lett. - 2006. - Vol. 96. - 075502. DOI
10. Rittel D., Landau P., Venkert A. Dynamic recrystallization as a potential cause for adiabatic shear failure // Phys. Rev. Lett. - 2008. - Vol. 101. - 165501. DOI
11. Marchand A., Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel // J. Mech. Phys. Solids. -1988. - Vol. 36, no. 3. - P. 251-283. DOI
12. Barker L.M. Behavior of dense media under high dynamic pressures. - New York: Gordon and Breach, 1968. - 483 p.
13. Swegle J.W., Grady D.E. Shock viscosity and the prediction of shock wave rise time // J. Appl. Phys. - 1985. - Vol. 58, no. 2. - P. 692-701. DOI
14. Razorenov S.V., Kanel G.I., Fortov V.E., Abasehov M.M. The fracture of glass under high-pressure impulsive loading // High Pressure Res. - 1991. - Vol. 6, no. 4. - P. 225-232. DOI
15. Najmark O.B. Kollektivnye svojstva ansamblej defektov i nekotorye nelinejnye problemy plasticnosti i razrusenia // Fiz. mezomeh. - 2003. - T. 6, No 4. - C. 45-72.
16. Sokovikov M.A., Bilalov D.A., Cudinov V.V., Uvarov S.V., Plehov O.A., Terehina A.I., Najmark O.B. Neravnovesnye perehody v ansamblah defektov pri dinamiceskoj lokalizacii plasticeskoj deformacii // PZTF. - 2014. - T. 40, No 23. - S. 82-88. DOI
17. Sokovikov M., Chudinov V., Bilalov D., Oborin V., Uvarov S., Plekhov O., Terekhina A., Naimark O. Experimental and numerical study of plastic shear instability under high-speed loading conditions // AIP Conf. Proc. - 2014. - Vol. 1623. - P. 599-602. DOI
18. Bilalov D., Sokovikov M., Chudinov V., Oborin V., Terekhina A., Naimark O. Numerical simulation and experimental investigation of localization of strain and fracture of metals under dynamic loading // AIP Conf. Proc. - 2014. - Vol. 1623. - P. 67-70. DOI
19. Sokovikov M.A., Baandin U.V., Lapunova E.A., Plehov O.A., Cudinov V.V., Najmark O.B. Lokalizacia plasticeskogo sdviga i mehanizmy razrusenia pri dinamiceskom nagruzenii metallov // Vycisl. meh. splos. sred. - 2013. - T. 6, No 4. - S. 467-474. DOI
20. Savel’eva N.V., Baandin U.V., Najmark O.B. Cislennoe modelirovanie deformirovania i razrusenia metallov v usloviah ploskogo udara // Vycisl. meh. splos. sred. - 2012. - T. 5, No 3. - S. 300-307. DOI
21. Baandin U.V., Kostina A.A., Najmark O.B., Panteleev I.A. Modelirovanie deformacionnogo povedenia vanadia pri kvazistaticeskom nagruzenii // Vycisl. meh. splos. sred. - 2012. - T. 5, No 1. - S. 33-39. DOI
22. Bouchaud E. Scaling properties of cracks // J. Phys. Condens. Mat. - 1997. - Vol. 9, no. 21. - P. 4319-4344. DOI
23. Froustey C., Naimark O., Bannikov M., Oborin V. Microstructure scaling properties and fatigue resistance of pre-strained aluminium alloys (part 1: Al-Cu alloy) // Eur. J. Mech. A-Solid. - 2010. - Vol. 29, no. 6. - P. 1008-1014. DOI
24. Oborin V.A., Bannikov M.V., Najmark O.B., Palin-Luc T. Masstabnaa invariantnost’ rosta ustalostnoj tresiny pri gigaciklovom rezime nagruzenia // PZTF. - 2010. - T. 36, No 22. - C. 76-82.

Published

2015-09-30

Issue

Section

Articles

How to Cite

Bilalov, D. A., Sokovikov, M. A., Chudinov, V. V., Oborin, V. A., Bayandin, Y. V., Terekhina, A. I., & Naimark, O. B. (2015). Study of plastic shear localization in aluminum alloys under dynamic loading. Computational Continuum Mechanics, 8(3), 319-328. https://doi.org/10.7242/1999-6691/2015.8.3.27