Numerical study of mechanisms of abnormally viscous liquid flows

Authors

  • Maria Vladimirovna Bachurina Perm National Research Polytechnic University
  • Aleksey Vladimirovich Kazakov Perm National Research Polytechnic University
  • Natalia Mikhailovna Trufanova Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2015.8.3.25

Keywords:

numerical study, stratified flow, mathematical modeling, formation of multi-layer coating, rheology

Abstract

The paper presents formulation and numerical implementation of the heat and mass transfer problem in recycled polymer materials with different physical and rheological properties. Since modern production uses more and more synthetic polymeric materials and the most efficient and convenient method of processing and forming of finished products is extrusion, the necessity in solving this problem occurs quite often, for example, in the process of superimposing multilayer coatings. Three-layer coating is usually made from polymer melts, the properties of which can vary over a fairly wide range. Furthermore, the viscosity of these materials depends nonlinearly on temperature and intensity of their deformation, which greatly hampers forecasting the results of interaction of stratified flows in the regions of their concurrent motion and the geometric dimensions of the resulting coating stack. The goal of this study is to assess the geometry of the available forming tool, the stability of an interface between stratified flows and to determine experimentally the dependence of the thickness of layers of polymeric materials on some process parameters. In order to simplify the problem, actual physical processes are represented by a mathematical model, which is a system of nonlinear differential equations that admit basic conservation laws. The set of partial differential equations describes the behavior of anomalously viscous liquids in conditions of forced motion and heat. For unambiguous identification of the simulated process reaching the stationary regime, the system of equations is supplemented with boundary conditions and physical and rheological properties of the tested materials. The model takes into account natural and technological limitations and assumptions. The model is implemented using a general purpose finite element code ANSYS. To verify the efficiency of the method, its parameter convergence is evaluated, and a comparative analysis is performed for forming tool operating under constant flow rate and pressure drop. The dependence of the thickness of superimposed layers on some technological parameters of the extrusion process is represented graphically. The possibility of applying the proposed model to a system of automated control for three-layer polymeric coating forming line is demonstrated.

Downloads

Download data is not yet available.

References

Malkin A.Ya. Non-Newtonian viscosity in steady-state shear flows // J. Non-Newton. Fluid. - 2013. - Vol. 192. - P. 48-65. DOI
2. Zhang M., Huang C., Sun S., Jia Y. The finite element simulation of polymer coextrusion based on the slip boundary // Polym.-Plast. Technol. - 2009. - Vol. 48, no. 7. - P. 754-759. DOI
3. Martyn M.T., Gough T., Spares R., Coates P.D., Zatloukal M. Visualisation and analysis of LDPE melt flows in a coextrusion geometry // ANTEC 2002. Proceeding of the 60th SPE Annual Technical Conference, San Francisco, CA, 5-9 May 2002. - P. 937-941.
4. Martyn M.T., Gough T., Spares R., Coates P.D., Zatloukal M. Experimental observations of LDPE melt flow in coextrusion geometries // ANTEC 2004. Proceeding of the 62th SPE Annual Technical Conference, Chicago, IL, 16-20 May 2004. - P. 205-209.
5. Martyn M.T., Coates P.D., Zatloukal M. Visualisation and analysis of polyethylene coextrusion melt flow // AIP Conf. Proc. - 2009. - Vol. 1152, no. 1. - P. 96-109. DOI
6. Martyn M.T., Spares R., Coates P.D., Zatloukal M. Imaging and analysis of wave type interfacial instability in the coextrusion of low-density polyethylene melts // J. Non-Newton. Fluid. - 2009. - Vol. 156, no. 3. - P. 150-164. DOI
7. Yankov V.I., Trufanova N.M., Shcherbinin A.G. Nonisothermal flow of polymer solutions and melts in channels of constant cross section // Theor. Found. Chem. Eng. - 2004. - Vol. 38, no. 2. - P. 179-188. DOI
8. Malkin A.Ya., Semakov A.V., Kulichihkin V.G. Modeling macromolecular movement in polymer melts and its relation to non-linear rheology // Rheol. Acta. - 2011. - Vol. 50, no. 5-6. - P. 485-489. DOI
9. Snigerev B.A. Matematiceskoe modelirovanie processa ekstruzii polimernogo rasplava // Himiceskaa promyslennost’ segodna. - 2012. - No 4. - S. 33-40.
10. Snigerev B.A., Tazukov F.H., Sajhetdinova R.S., Garifullin F.A. Modelirovanie neizotermiceskoj ekstruzii vazkouprugoj zidkosti // Vestnik Kazanskogo tehnologiceskogo universiteta. - 2012. - T. 15, No 6. - S. 47-51.
11. Snigerev B.A., Tazukov F.H. Dvuhslojnoe tecenie nelinejno-vazkih zidkostej v ploskom kanale // Ekologiceskij vestnik naucnyh centrov Cernomorskogo ekonomiceskogo sotrudnicestva. - 2010. - No 2. - S. 70-73.
12. Snigerev B.A. Neizotermiceskoe dvuhslojnoe tecenie nen’utonovskih zidkostej v ploskom kanale // Ekologiceskij vestnik naucnyh centrov Cernomorskogo ekonomiceskogo sotrudnicestva. - 2013. - No 4-1. - S. 104-111.
13. Rauvendal’ K. Ekstruzia polimerov - SPb.: Professia, 2008. - 768 s.
14. Urygin P.P., Gudanov I.S., Goncarov G.M., Lomov A.A. Matematiceskoe modelirovanie soekstruzii dlinnomernyh kol’cevyh izdelij iz rezinovyh smesej // Naucno-tehniceskij vestnik Povolz’a. -2013. - No 2. - S. 267-271.
15. Khan A.A., Han C.D. On the interface deformation in the stratified two-phase flow of viscoelastic fluids // Trans. Soc. Rheol. - 1976. - Vol. 20, no. 4. - P. 595-621. DOI
16. Landau L.D., Livsic E.M. Teoreticeskaa fizika: Gidrodinamika. - M.: Nauka, 1986. - T. 6. - 736 s.
17. Popov D.N., Panaiotti S.S., Rabinin M.V. Gidromehanika: Ucebnik dla vuzov / Pod red. D.N. Popova. - M.: Izd-vo MGTU im. N.E. Baumana, 2002. - 384 s.
18. Zhang J., Lodge T.P., Macosko Ch.W. Interfacial slip reduces polymer slip adhesion during coextrusion // J. Rheol. - 2006. - Vol. 50. - P. 41-58. DOI
19. Subbotin E.V., Trufanova N.M., Serbinin A.G. Cislennoe issledovanie tecenij polimernyh zidkostej v kanale snekovogo ekstrudera na osnove odno- i dvuhmernyh modelej // Vycisl. meh. splos. sred. - 2012. - T. 5, No 4. - S. 452-460. DOI
20. Kazakov A.V., Savcenko V.G., Trufanova N.M. Rascet vliania geometrii kanalov tehnologiceskogo instrumenta kabel’noj golovki na vozniknovenie vihrevyh potokov pri nalozenii izolacii // Kabeli i provoda. - 2010. - No 2 (321). - S. 11-13.
21. Tanner R.I. Some experiences using finite element methods in polymer processing and rheology // Proceedings of the 7th International Congress on Rheology, 23-27 August, Gothenburg, Sweden. - 1976. - P. 140.
22. Mikaeli V. Ekstruzionnye golovki dla plastmass i reziny. - SPb.: Professia, 2007. - 472 s.
23. Kazakov A.V., Trufanova N.M. Cislennye issledovania rezimov stratificirovannogo tecenia i metodika upravlenia processom ekstruzionnogo nalozenia mnogoslojnoj izolacii // Izvestia TPU. - 2012. - T. 320, No 4. - S. 167-171.
24. Kazakov A.V., Trufanova N.M. A system for adaptive monitoring of the process of polymer insulation production // Russian Electrical Engineering. - 2012. - Vol. 83, no. 11. - P. 640-643. DOI

Published

2015-09-30

Issue

Section

Articles

How to Cite

Bachurina, M. V., Kazakov, A. V., & Trufanova, N. M. (2015). Numerical study of mechanisms of abnormally viscous liquid flows. Computational Continuum Mechanics, 8(3), 298-309. https://doi.org/10.7242/1999-6691/2015.8.3.25