Numerical estimates of convective stability in the inclined layer of a porous medium

Authors

  • Mansur Gabdrakhimovich Mindubaev Institute of Geophysics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2015.8.3.24

Keywords:

porous medium, free thermal convection, convective stability

Abstract

A numerical study of natural convection in a plane highly porous layer placed in an impenetrable array at different angles of inclination to the horizontal plane is presented. Porosity, thermal conductivity, thermal diffusivity and some other parameters are assumed to be constant for both media. Investigations of convective flows in inclined layers usually consider layers with constant temperature at boundaries. In the present work, temperature is set constant at horizontal boundaries surrounding the impenetrable array, and the vertical boundary is considered as heat insulation. This problem formulation conforms to real conditions of geological sections. The problem has been solved by the finite difference method on non-uniform rectangular grids. For horizontal and vertical grid dimensions, hx> hzat α < 45˚and hx< hzat α > 45 are taken, respectively Thickness of the permeable layer is chosen as the unit of length. Estimates were made for the critical Rayleigh-Darcy number at different inclinations of the permeable layer, and the corresponding stability curve was plotted. It is shown that with increasing angle the convective flow stability decreases. An increase in the size of the surrounding array leads to a slight decrease in stability. The structural changes that occur in convection also take place. The number of realized convective cells decreases with increasing angle of inclination. This result is qualitatively consistent with the structure of convection in an inclined porous layer with constant temperature at boundaries. It has been found that the distribution of the heat flow over the surface of the surrounding array depends significantly on the depth and orientation of the layer and on the Rayleigh-Darcy number. Positive and negative density anomalies (comparable in amplitude) of the heat flow are intrinsic to the layers with a small angle.

Downloads

Download data is not yet available.

References

Lubimova E.A., Vlasov V.K., Osnac A.I. Teplovye potoki iz nedr Zemli v zavisimosti ot vnutrennih parametrov // Teplovye potoki iz kory i verhnej mantii Zemli / Pod red. V.I. Vlodovca i E.A. Lubimovoj. - M.: Nauka, 1973. - S. 7-18.
2. Lopatnikov S.L. Teplovaa konvekcia i obrazovanie mestorozdenij nefti // DAN. - 1995. -T. 345, No 4. - S. 541-543.
3. Karakin A.V., Lobkovskij L.I., Masnikov V.P. Gidrotermal’naa konvekcia v verhnih sloah kory i ee vlianie na geotermiceskij gradient // Teoreticeskie i eksperimental’nye issledovania po geotermike morej i okeanov / Pod red. E.A. Lubimovoj i U.M. Pusarovskogo.- M.: Nauka, 1984. - S. 9-17.
4. Masnikov V.P., Ivanov V.V. Geotermiceskie anomalii poristyh kollektorov, zapolnennyh podviznymi fluidami // Teoreticeskie i eksperimental’nye issledovania po geotermike morej i okeanov / Pod red. E.A. Lubimovoj i U.M. Pusarovskogo.- M.: Nauka, 1984. - S. 81-89.
5. Horton C.W., Rogers F.T.Jr. Convection currents in a porous medium // J. Appl. Phys. - 1945. - Vol. 16, no. 6. - P. 367-370. DOI
6. Lapwood E.R. Convection of a fluid in a porous medium // Math. Proc. Cambridge. - 1948. - Vol. 44, no. 4. - P. 508-521. DOI
7. Gersuni G.Z., Zuhovickij E.M. Konvektivnaa ustojcivost’ neszimaemoj zidkosti.- M.: Nauka, 1972. - 392 s.
8. Kolesnikov A.K., Lubimov D.V. O konvektivnoj neustojcivosti zidkosti v naklonnom sloe poristoj sredy // PMTF.- 1973.- No 3.- S. 127-131.
9. Caltagirone J.P., Bories S. Solutions and stability criteria of natural convective flow in an inclined porous layer // J. Fluid Mech. - 1985. - Vol. 155. - P. 267-287. DOI
10. Rees D.A.S., Bassom A.P. The onset of Darcy-Benard convection in an inclined layer heated from below // Acta Mech. -2000. - Vol. 144, no. 1-2. - P. 103-118. DOI
11. Inaba H., Sugavara M., Blumenberg J. Natural convection heat transfer in an inclined porous layer // Int. J. Heat Mass Tran. - 1988. - Vol. 31, no.7. - P.1365-1374. DOI
12. Barletta A., Rees D.A.S. Linear instability of the Darcy-Hadley flow in an inclined porous layer // Phys. Fluids. - 2012. - Vol. 24, no. 7. - 074104. DOI
13. Mal’kovskij V.I., Pek A.A. Uslovia razvitia teplovoj konvekcii odnofaznogo fluida v vertikal’nom razlome // Petrologia. - 1997. - T. 7, No 4. - S. 428-434.
14. Bobrov A.M., Lopatnikov S.L. Razvitie gidrotermal’noj konvekcii v vertikal’noj pronicaemoj zone, zaklucennoj v trehmernyj nepronicaemyj teploprovodnyj massiv // Fizika Zemli. - 2001. - No 3. - S. 63-70.
15. Hacaj U.V., Mindubaev M.G. O vlianii svobodnoj konvekcii v 3D-strukture poristoj sredy na eksperimental’nye ocenki geotermiceskogo potoka // Monitoring. Nauka i tehnologii. - 2012. - No 4. - S. 6-11.
16. Mindubaev M.G. 3D modeli svobodnoj konvekcii poristoj srede i ee vlianie na ocenki geotermiceskogo potoka // Voprosy teorii i praktiki geologiceskoj interpretacii gravitacionnyh, magnitnyh i elektriceskih polej: Materialy 41-j sessii Mezdunarodnogo seminara im. D.G. Uspenskogo. - Ekaterinburg, 2014. - S. 156-159.
17. Dement’ev O.N., Lubimov D.V. O vozniknovenii konvekcii v gorizontal’nom ploskom sloe poristoj sredy // Ucen. zapiski Permskogo un-ta, sb. <>. - 1972. - No 4. - S. 25-32.
18. Mindubaev M.G. Rezul’taty cislennogo modelirovania 2D konvekcii v naklonnyh poristyh sloah // Ural’skij geofiziceskij vestnik. - 2014. - No 1(23). - S. 67-71.
19. Nield D.A., Bejan A. Convection in porous media. - New York: Springer, 2006. - 640 p.
20. Berkovskij B.N., Nogotov E.F. Raznostnye shemy issledovania zadac teploobmena. - Minsk: Nauka i tehnika, 1976. - 142 s.
21. Samarskij A.A. Teoria raznostnyh shem. - M.: Nauka, 1989. - 616 s.
22. Galuskin U.I. Modelirovanie osadocnyh bassejnov i ocenka ih neftegazonosnosti. - M.: Naucnyj mir, 2007. - 456 s.

Published

2015-09-30

Issue

Section

Articles

How to Cite

Mindubaev, M. G. (2015). Numerical estimates of convective stability in the inclined layer of a porous medium. Computational Continuum Mechanics, 8(3), 289-297. https://doi.org/10.7242/1999-6691/2015.8.3.24