Optimization of the finite element mesh in modeling of hydrofracturing crack growth
DOI:
https://doi.org/10.7242/1999-6691/2015.8.3.21Keywords:
finite element method, computer modeling, fracture toughness, elastic energy release rate, virtual crack closure techniqueAbstract
The effect of mesh geometry on the accuracy of solution of linear fracture mechanics problems by the finite element methods is considered. Guidelines on determination of an optimal mesh for several routine problems using elements with the linear and quadratic approximation of displacements have been formulated. The accuracy of finite-element solutions is estimated as the difference of a calculated stress intensity factor (SIF) from that obtained in analytical solution. In problems of oil-bearing formation hydrofracturing, the pump-in pressure of injected water produces a distributed load on crack flanks as opposed to standard problems of fracture mechanics having analytical solutions, where a load is applied to the external boundaries of a computational region, while cracks themselves are kept free from stresses. Some model pressure profiles, as well as pressure profiles taken from real hydrodynamic computations, have been considered. Computer models of cracks with regard to the pre-stressed state, fracture toughness, and elastic material properties have been developed in the batch system of finite-element analysis MSC.Marc.2012. The Irwin force criterion is used as a criterion of brittle fracture and SIFs are computed using the Cherepanov-Rice invariant J-integral. The process of crack propagation in a linear isotropic elastic body is described in terms of elastic energy release rate G and the VCCT (Virtual Crack Closure Technique) approach is used for modeling the crack propagation. It has been found that the accuracy of solution is sensitive to the mesh configuration. Several parameters, which are dominant factors in constructing effective meshes of finite elements, that is, the minimum element size, the distance between mesh nodes in the vicinity of a crack tip, and the ratio of the height of an element to its length, have been established. It has been shown that using only small elements does not necessarily improve the accuracy of solutions.
Downloads
References
Ibragimov L.H., Misenko I.T., Celoanc D.K. Intensifikacia dobyci nefti. - M.: Nauka, 2000. - 414 s.
2. Alekseenko O.P., Esipov D.V., Kuranakov D.S., Lapin V.N., Cernyj S.G. Dvumernaa posagovaa model’ rasprostranenia tresiny gidrorazryva // Vestnik NGU. Seria: Matematika, mehanika, informatika. - 2011. - T. 11, No 3. - C. 36-60.
3. Zeltov U.P., Hristianovic S.A. O gidravliceskom razryve neftenosnogo plasta // Izv. AN SSSR. OTN. - 1955. - No 5. - S. 3-41.
4. Geertsma J., De Klerk F. A rapid method of predicting width and extent of hydraulically induced fractures // J. Petrol. Technol. - 1969. - Vol. 21, no. 12. - P. 1571-1581. DOI
5. Mushelisvili N.I. Nekotorye osnovnye zadaci matematiceskoj teorii uprugosti. - M.: Nauka, 1966. - 708 s.
6. Pestrikov V.M., Morozov E.M. Mehanika razrusenia tverdyh tel. - SPb.: Professia, 2002. - 320 s.
7. Belytschko T., Black T. Elastic crack growth in finite elements with minimal remeshing // Int. J. Numer. Meth. Eng. - 1999. - Vol. 45, no. 5. - P. 601-620. DOI
8. Moes N., Dolbow J., Belytschko T. A finite element method for crack growth without remeshing // Int. J. Numer. Meth. Eng. - 1999. - Vol. 46, no. 1. - P. 131-150. DOI
9. Belytschko T., Moes N., Usui S., Parimi C. Arbitrary discontinuities in finite elements // Int. J. Numer. Meth. Eng. - 2001. - Vol. 50, no. 4. - P. 993-1013. DOI
10. Guydish J.J., Fleming J.F. Optimization of the finite element mesh for the solution of fracture problems // Eng. Fract. Mech. - 1978. - Vol. 10, no. 1. - P. 31-42. DOI
11. Panasuk V.V., Andrejkiv A.E., Parton V.Z. Osnovy mehaniki razrusenia materialov. - Kiev: Naukova dumka, 1988. - 488 s.
12. Morozov E.M., Nikiskov G.P. Metod konecnyh elementov v mehanike razrusenia. - M.: Kniznyj dom <>, 2010. - 256 s.
13. MARC Users Guide. Vol. A. - Santa Ana (CA): MSC.Software Corporation, 2012. - 813 p.
14. Chekhonin E., Levonyan K. Hydraulic fracture propagation in highly permeable formations, with applications to tip screenout // Int. J. Rock Mech. Min. - 2012. - Vol. 50. - P. 19-28. DOI
15. Desroches J., Lenoach B., Papanastasiou P., Thiercelin M. On the modelling of near tip processes in hydraulic fractures // Int. J. Rock Mech. Min. - 1993. - Vol. 30, no. 7. - P. 1127-1134. DOI
16. Cerepanov G.P. O rasprostranenii tresin v splosnoj srede // PMM. - 1967. - T. 31, No 3. - S. 476-488.
17. DeLorenzi H.G. On the energy release rate and the J-integral for 3D crack configurations // Int. J. Fracture. - 1982. - Vol. 19, no. 3. - P. 183-193. DOI
18. Savruk M.P. Koefficienty intensivnosti naprazenij v telah s tresinami // Mehanika razrusenia i procnost’ materialov: tom 2 / Pod obs. red. V.V. Panasuka. - Kiev: Naukova dumka, 1988. - 620 s.
19. Zhang X., Jeffrey R.G., Detournay E. Propagation of a hydraulic fracture parallel to a free surface // Int. J. Numer. Anal. Met. - 2005. - Vol. 29, no. 13. - P. 1317-1340. DOI
20. Zhang X., Jeffrey R.G. Reinitiation or termination of fluid-driven fractures at frictional bedding interfaces // J. Geophys. Res. - 2008. - Vol. 113, no. B8. DOI
21. Zhang X., Jeffrey R.G., Thiercelin M. Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries // J. Geophys. Res. - 2009. - Vol. 114, no. B12. DOI
22. Krueger R. Virtual crack closure technique: History, approach, and applications // Appl. Mech. Rev. - 2004. - Vol. 57, no. 2. - P. 109-143. DOI
23. Korobejnikov S.N. Nelinejnoe deformirovanie tverdyh tel. - Novosibirsk: Izd-vo SO RAN, 2000. - 262 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.