Finite-amplitude perturbations of the advective flows in a horizontal layer of incompressible liquid with a free upper boundary at low rotation
DOI:
https://doi.org/10.7242/1999-6691/2015.8.2.15Keywords:
advective flow, stability, rotation, finite-amplitude perturbations, helical perturbations, spiral perturbationsAbstract
The behavior of spatially finite-amplitude perturbations of the advective flow in a rotating horizontal layer of incompressible liquid with a free upper boundary and a lower rigid boundary at low rotation is investigated. The study is based on the equations of convection in the Boussinesq approximation in a rotating reference frame in a Cartesian coordinate system. Because of the great complexity of a three-dimensional formulation the following limiting cases are considered: spatial perturbations of the first type in the form of rolls with axes perpendicular to x -direction and spatial perturbations of the second type in the form of rolls with axes parallel to x -axis. At a fixed Prandtl number (Pr=6.7), perturbation isolines are plotted for different Taylor and Grashof numbers. The behavior of finite-amplitude perturbations is considered beyond the stability threshold. The nonlinear problem is solved numerically by the grid method. An explicit finite-difference scheme with central differences is used. The Poisson equation for perturbation stream functions is solved by the successive over-relaxation (SOR) method. The numerical results allow one to evaluate the behavior of perturbations and to determine velocity characteristics, amplitude and period of repetition of perturbations. The analysis indicates that spatial structures (vortices) oriented across the layer are generated in the supercritical region under the influence of temperature inhomogeneities. Temperature perturbation is a system of alternating warm and cold spots located along the direction of the temperature gradient on the layer boundaries. With increasing Taylor number, the vortices near the free upper boundary are replaced by those along the lower rigid boundary, and the amplitude of vortices increases. With increasing Grashof number, thermal spots are rearranged, their size increases, the warm spots are located near the upper and lower boundaries of the layer, and the cold ones in the center of the layer. The movement becomes more complex. A repetition period of finite amplitude perturbation patterns reduces.
Downloads
References
Aristov S.N., Zimin V.D. Advektivnye volny vo vrasausemsa sarovom sloe: Preprint No 145 / IMSS, Ural’skij naucnyj centr, AN SSSR. - Sverdlovsk, 1986. - 50 s.
2. Aristov S.N., Frik P.G. Dinamika krupnomasstabnyh tecenij v tonkih sloah zidkosti: Preprint No 146 / IMSS, Ural’skij naucnyj centr, AN SSSR. - Sverdlovsk, 1987. - 48 s.
3. Aristov S.N., Frik P.G. Krupnomasstabnaa turbulentnost’ v tonkom sloe neizotermiceskoj vrasausejsa zidkosti // MZG. - 1988. - No 4. - S. 48-55. DOI
4. Pedloski Dz. Geofiziceskaa gidrodinamika. V 2-h tomah. - M.: Mir, 1984. - T. 1. - 398 s.
5. Ekman V.W. On the influence of the Earth’s rotation on ocean currents // Arkiv Mater., Astron., Phys. - 1905. - Vol. 2, no. 11. - P. 1-52 p.
6. Aristov S.N., Svarc K.G. Vihrevye tecenia advektivnoj prirody vo vrasausemsa sloe zidkosti. - Perm’: Izd-vo PGU, 2006. - 154 s.
7. Ostroumov G.A. Svobodnaa konvekcia v usloviah vnutrennej zadaci. - M.: Gostehteorizdat, 1952. - 286 s.
8. Myznikov V.M. Konecno-amplitudnye konvektivnye dvizenia zidkosti v gorizontal’nom sloe s prodol’nym gradientom temperatury // Matematiceskie modeli tecenij zidkosti: Tr. 6-go Vsesouz. seminara po cisl. metodam mehaniki vazkoj zidkosti. - Novosibirsk: ITPM SO AN SSSR, 1978. - S. 176-186.
9. Myznikov V.M. Konecno-amplitudnye prostranstvennye vozmusenia advektivnogo dvizenia v gorizontal’nom sloe so svobodnoj granicej // Konvektivnye tecenia. - Perm’: Izd-vo PGPI, 1981. - S. 83-88.
10. Gershuni G.Z., Laure P., Myznikov V.M., Roux B., Zhukhovitsky E.M. On the stability of plane-parallel advective flows in long horizontal layers // Microgravity Q. - 1992. - Vol. 2, no. 3. - P. 141-151.
11. Aristov S.N., Svarc K.G. Ob ustojcivosti advektivnogo tecenia vo vrasausemsa gorizontal’nom sloe zidkosti // MZG. - 1999. - No 4. - S. 3-11.
12. Svarc K.G. Konecno-amplitudnye prostranstvennye vozmusenia advektivnogo tecenia vo vrasausemsa gorizontal’nom sloe zidkosti // Vycislitel’nye tehnologii. - 2001. - T. 6, C. 2, Spec. vypusk. - Trudy Mezdunarodnoj konferencii RDAMM-2001. - S. 702-707. (URL: http://www.ict.nsc.ru/ws/NikNik/1459/rep1459.pdf).
13. Tarunin E.L., Svarc K.G. Issledovanie linejnoj ustojcivosti advektivnogo tecenia metodom setok // ZVT. - 2001. - T. 6, No 6. - S. 108-117.
14. Schwarz K.G. Instability of advective flow in rotating horizontal layer of liquid // Selected Papers of the International conference "Fluxes and Structures in Fluids". St. Petersburg, Russia, June 23-26, 2003. - Moscow: IPM RAS, 2004. - P. 164-171.
15. Gersuni G.Z., Zuhovickij E.M., Nepomnasij A.A. Ustojcivost’ konvektivnyh tecenij. - M.: Nauka, 1989. - 320 s.
16. Svarc K.G. Issledovanie ustojcivosti advektivnyh tecenij vo vrasausemsa sloe zidkosti // Vestnik Permskogo universiteta. Matematika. Mehanika. Informatika. - 2013. - No 1(13). - S. 54-61.
17. Imaishi N., Shi W. Thermocapillary convection in a shallow annular pool of silicone oil // Engineering Sciences Report, Kyushu University. - 2006. - Vol. 28, no. 1. - P. 1-8.
18. Evgrafova A.V., Suhanovskij A.N. Cislennoe modelirovanie krupnomasstabnogo tecenia v cilindriceskom sloe zidkosti s lokal’nym podogrevom snizu // Vestnik Permskogo universiteta. Matematika. Mehanika. Informatika. - 2011. - No 5(9). - S. 79-82.
19. Lubimova T.P., Nikitin D.A. Ustojcivost’ advektivnogo tecenia v gorizontal’nom kanale pramougol’nogo secenia s adiabaticeskimi granicami // MZG. - 2011. - No 2. - S. 82-91. DOI
20. Lubimova T.P., Nikitin D.A. Trehmernye advektivnye tecenia v gorizontal’nom cilindre kvadratnogo secenia s teploizolirovannymi bokovymi granicami // Vycisl. meh. splos. sred. - 2011. - T. 4, No 2. - S. 72-81. DOI
21. Yu J.-J., Ruan D.-F., Li Y.-R., Chen J.-C. Experimental study on thermocapillary convection of binary mixture in a shallow annular pool with radial temperature gradient // Exp. Therm. Fluid Sci. - 2015. - Vol. 61. - P. 79-86. DOI
22. Shvarts K.G., Boudlal A. Effect of rotation on stability of advective flow in horizontal liquid layer with a free upper boundary // J. Phys.: Conf. Ser. - 2010. - Vol. 216, no. 1. - 012005. DOI
23. Nikitin N.V., Nikitin S.A., Polezaev V.I. Konvektivnye neustojcivosti v gidrodinamiceskoj modeli rosta kristallov metodom Cohral’skogo // Uspehi mehaniki. - 2003. - T. 2, No 4. - S. 63-105.
24. Gersuni G.Z., Zuhovickij E.M. Konvektivnaa ustojcivost’ neszimaemoj zidkosti. - M.: Nauka, 1972. - 392 s.
25. Tarunin E.L. Vycislitel’nyj eksperiment v zadacah svobodnoj konvekcii. - Irkutsk: Izd-vo Irkut. un-ta, 1990. - 228 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.