Periodic modulation of an equilibrium temperature gradient in a fluid layer and a saturated porous medium layer
DOI:
https://doi.org/10.7242/1999-6691/2015.8.2.14Keywords:
convection, two-layer system, porous medium, modulation of temperature gradientAbstract
A linear problem of equilibrium stability in a heated from below two-layer system of a pure fluid layer and a saturated porous medium layer in the presence of varying temperature gradient under gravity is investigated. The problem is solved in the framework of Floquet theory. Numerical calculations are carried out on the basis of shooting method with orthogonalization and Galerkin method. The rectangular periodic modulation of heat flux is considered. This study is limited by the low-frequency modulation when one can neglect the spatial inhomogeneity of temperature gradient. Originally we present neutral curves of equilibrium stability in the presence of constant temperature gradient. After that we describe the stability maps obtained in the conditions of its periodic modulation. Resonance regions of the parametric instability with respect to the harmonic (with the period equal to the period of modulation) and subharmonic (with the period twice as large as the period of modulation) perturbations of the equilibrium were determined for various values of the effective Rayleigh number. The region limiting the baseband of instability was found. It was shown that at certain values of the frequency and modulation amplitude the convective flow could arise in the system only due to the periodic oscillations of temperature at its boundaries when the average temperature gradient was zero. The effect of conditions at the interface between the fluid and porous layers on the onset of convection in the system was studied. It was determined that perturbations of the smaller wave length, generally located in the fluid layer, were most affected by conditions at the interface between layers in contrast to the perturbations of the larger wave length propagating inside the saturated porous medium.
Downloads
References
Lubimov D.V., Muratov I.D. O konvektivnoj neustojcivosti v sloistoj sisteme // Gidrodinamika. - Perm’, 1977. - No 10. - S. 38-46.
2. Chen F., Chen C.F. Onset of finger convection in a horizontal porous layer underlying a fluid layer // J. Heat Transfer. - 1988. - Vol. 110, no. 2. - P. 403-409. DOI
3. Zhao P., Chen C.F. Stability analysis of double-diffusive convection in superposed fluid and porous layers using a one-equation model // Int. J. Heat Mass Tran. - 2001. - Vol. 44, no. 24. - P. 4625-4633. DOI
4. Venezian G. Effect of modulation on the onset of thermal convection // J. Fluid Mech. - 1969. - Vol. 35, no. 2. - P. 243-254. DOI
5. Gersuni G.Z., Zuhovickij E.M. Konvektivnaa ustojcivost’ neszimaemoj zidkosti. - M.: Nauka, 1972. - 392 s.
6. Rudraiah N., Malashetty M.S. Effect of modulation on the onset of convection in a sparsely packed porous medium // J. Heat Transfer. - 1990. - Vol. 112, no. 3. - P. 685-689. DOI
7. Malashetty M.S., Wadi V.S. Rayleigh-Benard convection subject to time dependent wall temperature in a fluid-saturated porous layer // Fluid Dyn. Res. -1999. - Vol. 24. - P. 293-308. DOI
8. Malashetty M.S., Basavaraja D. Rayleigh-Benard convection subject to time dependent wall temperature in a fluid saturated anisotropic porous medium // Heat Mass Transfer. - 2002. - Vol. 38, no. 7-8. - P. 551-565. DOI
9. Bhadauria B.S. Thermal modulation of Rayleigh-Benard convection in a sparsely packed porous medium // J. Porous Media. - 2007. - Vol. 10, no. 2. - P. 175-188. DOI
10. Smorodin B.L. Konvekcia binarnoj smesi v usloviah termodiffuzii i peremennogo gradienta temperatury // PMTF. - 2002. - T. 43, No 2. - S. 54-61. DOI
11. Bulgakova N.S., Ramazamov M.M. Konvektivnaa ustojcivost’ gorizontal’nogo sloa binarnoj smesi pri modulacii gradienta temperatury // MZG. - 2010. - T. 45, No 3. - S. 22-32. DOI
12. Zen’kovskaa S.M. Dejstvie vysokocastotnoj vibracii na fil’tracionnuu konvekciu // PMTF. - 1992. - T. 33, No 5. - S. 83-88. DOI
13. Zen’kovskaa S.M., Rogovenko T.N. Fil’tracionnaa konvekcia v vysokocastotnom vibracionnom pole // PMTF. - 1999. - T. 40, No 3. - S. 22-29. DOI
14. Bardan G., Mojtabi A. On the Horton-Rogers-Lapwood convective instability with vertical vibration: Onset of convection // Phys. Fluids. - 2000. - Vol. 12, no. 11. - P. 2723-2731. DOI
15. Lyubimov D.V. Convective flows under the influence of high-frequency vibrations // Eur. J. Mech. B / Fluids. - 1995. - Vol. 14, no. 4. - P. 439-458.
16. Kolcanova E.A., Lubimov D.V., Lubimova T.P. Vlianie effektivnoj pronicaemosti sredy na ustojcivost’ dvuhslojnoj sistemy <> v pole vibracij vysokoj castoty // Vycisl. meh. splos. sred. - 2012. - T. 5, No 2. - S. 225-232. DOI
17. Myznikova B.I., Smorodin B.L. O konvektivnoj ustojcivosti gorizontal’nogo sloa dvuhkomponentnoj smesi v modulirovannom pole vnesnih sil // MZG. - 2001. - No 1. - S. 3-13. DOI
18. Nield D.A., Bejan A. Convection in porous media. - New York: Springer-Verlag, 1999. - 546 p.
19. Beavers G.S., Joseph D.D. Boundary conditions at a naturally permeable wall // J. Fluid Mech. - 1967. - Vol. 30, no. 1. - P. 197-207. DOI
20. Lobov N.I., Lubimov D.V., Lubimova T.P. Cislennye metody resenia zadac teorii gidrodinamiceskoj ustojcivosti: Uceb. posobie. - Perm’: Izd-vo PGU, 2004. - 101 s.
21. Goracenko V.D. Elementy teorii kolebanij: Uceb. posobie dla studentov vuzov. - M.: Vyssaa skola, 2001. - 395 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.