The banding waves in the beam with periodically located point masses

Authors

  • Georgiy Viktorovich Filippenko Institute of Mechanical Engineering RAS

DOI:

https://doi.org/10.7242/1999-6691/2015.8.2.13

Keywords:

periodic structure, pass and stop bands, energy flux

Abstract

The paper is concerned with stationary oscillations of a one-dimensional, elastic infinite beam (Bernoulli beam) with periodic system of point masses. All processes are assumed to be time-dependent harmonic. The infinite beam and its isolated periodicity cell are considered. The problem is solved in a rigorous mathematical statement. A faithful representation of the energy flux in an infinite periodic system is found. The asymptotics of pass and stop band boundaries and the energy flux in the infinite periodic system is explored. The effect of relative energy flux attenuation in the first pass band is analyzed when comparing with other pass bands with increasing masses of inertial inclusions. The dependence of the character and «heterogeneity degree» of the wave process in the beam on the position of a corresponding wave number with respect to pass bands is considered. The effect is explored in the analysis of vibrations corresponding to different pass and stop bands. The modes of free vibrations of a periodic cell in the case of its asymmetry are analyzed with special attention to edge effects on the basis of the parameters of the problem. The position of point masses is considered with respect to the knots and pseudo-knots of standing and propagating waves in the infinite system and to the knots of a standing wave in the isolated periodicity cell depending on the problem parameters. These results can be used for studying and designing periodic structures with a given interval of natural frequencies (in stop or pass bands), as well as for analyzing edge effects in them. This can be achieved by using the symmetry properties of the cell and by matching boundary conditions.

Downloads

Download data is not yet available.

References

Mead D.M. Wave propagation in continuous periodic structures: research contributions from Southampton, 1964-1995 // J. Sound Vib. - 1996. - Vol. 190, no. 3. - P. 495-524. DOI
2. Olhoff N., Niu B., Cheng G. Optimum design of band-gap beam structures // Int. J. Solids Struct. - 2012. - Vol. 49, no. 22. - P. 3158-3169. DOI
3. Filippenko G.V. The location of pass and stop bands of an infinite periodic structure versus the eigenfrequencies of its finite segment consisting of several "periodicity cells" // 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2013), June 12-14, 2013, Kos Island, Greece. - 1 CD ROM, 2013. - Article 1690. - 12 p. http://www.eccomasproceedings.org/cs2013/pdf/1690.pdf (data obrasenia 06.04.2015).
4. Filippenko G.V. Wave phenomena in the periodic beam // Abstracts of the Int. Conf. "Days on Diffraction 2013", May 27-31, 2013, St.-Petersburg, Russia. - P. 31. www.pdmi.ras.ru/~dd/download/book13.pdf (data obrasenia 06.04.2015).
5. Glushkov E., Glushkova N., Wauer J. Wave propagation in an elastically supported string with point-wise defects: gap-band and pass-band effects // ZAMM. - 2011. - Vol. 91, no. 1. - P. 4-22. DOI
6. Soe-Knudsen A., Sorokin S.V. Modelling of linear wave propagation in spatial fluid filled pipe systems consisting of elastic curved and straight elements // J. Sound Vib. - 2010. - Vol. 329, no. 24. - P. 5116-5146. DOI
7. Dym H., McKean H.P. Gaussian processes, function theory, and the inverse spectral problem. - Academic Press, 1976. - 333 p.
8. Jensen J.S. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures // J. Sound Vib. - 2003. - Vol. 266, no. 5. - P. 1053-1078. DOI
9. Sorokin S.V., Ershova O.A. Plane wave propagation and frequency band gaps in periodic plates and cylindrical shells with and without heavy fluid loading // J. Sound Vib. - Vol. 278, no. 3. - P. 501-526. DOI
10. Eliseev V.V., Zinov’eva T.V. Nelinejno-uprugaa deformacia podvodnogo truboprovoda v processe ukladki // Vycisl. meh. splos sred. - 2012. - T. 5, No 1. - S. 70-78. DOI
11. Sorokin S.V. The Green’s matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs // J. Acoust. Soc. Am. - 2011. - Vol. 129, no. 3. - P. 1315-1323. DOI
12. Yan J., Li T.Y., Liu J.X., Zhu X. Space harmonic analysis of sound radiation from a submerged periodic ring-stiffened cylindrical shell // Appl. Acoust. - 2006. - Vol. 67, no. 8. - P. 743-755. DOI
13. Ruzzene M., Baz A. Dynamic stability of periodic shells with moving loads // J. Sound Vib. - 2006. - Vol. 296, no. 4-5. - P. 830-844. DOI
14. Yu D., Paidoussis M.P., Shen H., Wang L. Dynamic stability of periodic pipes conveying fluid // J. Appl. Mech. - 2013. - Vol. 81, no. 1. - 011008. DOI
15. Shen H., Paidoussis M.P., Wen J., Yu D., Wen X. The beam-mode stability of periodic functionally-graded-material shells conveying fluid // J. Sound Vib. - 2014. - Vol. 333, no. 10. - P. 2735-2749. DOI
16. Shen H., Wen J., Yu D., Asgari M., Wen X. Sontrol of sound and vibration of fluid-filled cylindrical shells via periodic design and active control // J. Sound Vib. - 2013. - Vol. 332, no. 18. - P. 4193-4209. DOI
17. Lee S., Vlahopoulos N., Waas A.M. Analysis of wave propagation in a thin composite cylinder with periodic axial and ring stiffeners using periodic structure theory // J. Sound Vib. - 2010. - Vol. 329, no. 16. - P. 3304-3318. DOI
18. Krynkin A., Umnova O., Taherzadeh S., Attenborough K. Analytical approximations for low frequency band gaps in periodic arrays of elastic shells // J. Acoust. Soc. Am. - 2013. - Vol. 133, no. 2. - P. 781-791. DOI
19. Filippenko G.V. Energeticeskie aspekty osesimmetricnogo rasprostranenia voln v beskonecnoj cilindriceskoj obolocke, polnost’u pogruzennoj v zidkost’ // Vycisl. meh. splos. sred. - 2013. - T. 6, No 2. - S. 187-197. DOI
20. Filippenko G.V. Energeticeskie aspekty rasprostranenia voln v beskonecnoj cilindriceskoj obolocke, polnost’u pogruzennoj v zidkost’// Vycisl. meh. splos. sred. - 2014. - T. 7, No 3. - S. 295-305. DOI
21. Vesev V.A., Kouzov D.P., Mirolubova N.A. Potoki energii i dispersia normal’nyh voln izgibnogo tipa v balke krestoobraznogo profila // Akusticeskij zurnal. - 1999. - T. 45, No 3. - S. 331-336.
22. Kouzov D.P., Mirolubova N.A. Lokal’nye potoki energii vynuzdennyh kolebanij tonkoj uprugoj polosy // Vycisl. meh. splos. sred. - 2012. - T. 5, No 4. - S. 397-404. DOI
23. Sorokin S.V. Analysis of vibrations and energy flows in sandwich plates bearing concentrated masses and spring-like inclusions in heavy fluid-loading conditions // J. Sound Vib. - 2002. - Vol. 253, no. 2. - P. 485-505. DOI

Published

2015-06-30

Issue

Section

Articles

How to Cite

Filippenko, G. V. (2015). The banding waves in the beam with periodically located point masses. Computational Continuum Mechanics, 8(2), 153-163. https://doi.org/10.7242/1999-6691/2015.8.2.13