Numerical simulation of the dynamics and strucтure of a diffusion-driven flow on a wedge
DOI:
https://doi.org/10.7242/1999-6691/2015.8.1.9Keywords:
numerical simulation, open source software packages, stratified flow, fundamental set, evolution of structureAbstract
Generation of disturbances arising in a stratified medium due to the insertion of a wedge-shaped obstacle that breaks the homogeneity of a background diffusion flux and produces a complex system of slow flows is investigated. The fundamental equations of inhomogeneous multi-component fluid mechanics are used to describe the phenomena under consideration. In the present paper we propose a technique for modeling continuously modified fluids. The approach is implemented in the original OpenFOAM solvers. The computational domain is discretized using utilities blockMesh, topoSet and refineMesh of the OpenFOAM package, as well as an open source integration SALOME platform. A comparison of different methods for constructing effective high-resolution computational meshes for studying physical processes is carried out. High-resolution calculations are performed in a physically relevant parameter regime. Calculations are made in a parallel regime on the computational facilities of the web-laboratory UniHUB. ParaView and Origin packages are used for visualizing data. Calculation results demonstrate the efficiency of the proposed methods to model numerically diffusion-driven flows on a wedge in a stably stratified fluid. Numerical simulations are used to find the patterns of fields representing different physical quantities and to determine a difference in pressure between the vertex and base of the wedge that generates a propulsive force resulting in a self-motion of an obstacle along its neutral buoyancy horizon.
Downloads
References
Prandtl’ L. Gidroaeromehanika. - M.: IL, 1949. - 520 c.
2. Shapiro A., Fedorovich E. A boundary-layer scaling for turbulent katabatic flow // Bound.-Lay. Meteorol. - 2014. - Vol. 153, no. 1. - P. 1-17. DOI
3. Phillips O.M. On flows induced by diffusion in a stably stratified fluid // Deep-Sea Res. - 1970. - Vol. 17, no. 3. - P. 435-443. DOI
4. Allshouse M.R., Barad M.F., Peacock T. Propulsion generated by diffusion-driven flow // Nature Physics. - 2010. - Vol. 6. - P. 516-519. DOI
5. Page M.A. Fluid dynamics: Propelled by diffusion // Nature Physics. - 2010. - Vol. 6. - P. 486-487. DOI
6. Mercier M.J., Ardekani A.M., Allshouse M.R., Doyle B., Peacock T. Self-propulsion of immersed objects via natural convection // Phys. Rev. Lett. - 2014. - Vol. 112. - 204501(5). DOI
7. Caseckin U.D., Zagumennyj A.V. Tecenia nepreryvno stratificirovannoj zidkosti, inducirovannye preryvaniem diffuzionnogo perenosa nepodviznoj plastinoj // Morskoj gidrofiziceskij zurnal. - 2012. - No 5. - S. 3-23.
8. Caseckin U.D. Differencial’naa mehanika zidkostej: soglasovannye analiticeskie, cislennye i laboratornye modeli stratificirovannyh tecenij // Vestnik MGTU im. N.E. Baumana. Seria: Estestvennye nauki. - 2014. - No 6(57). - C. 67-95. http://vestniken.bmstu.ru/articles/547/547.pdf (data obrasenia: 01.04.2015).
9. Bajdulov V.G., Caseckin U.D. Sravnitel’nyj analiz simmetrij modelej mehaniki neodnorodnyh zidkostej // DAN. - 2012. - T. 444, No 1. - C. 38-41. DOI
10. Dimitrieva N.F., Zagumennyj A.V. Cislennoe modelirovanie stratificirovannyh tecenij s ispol’zovaniem OpenFOAM // Trudy Instituta sistemnogo programmirovania RAN. - 2014. - T. 26, No 5. - S. 187-200. DOI
11. Chashechkin Yu.D., Mitkin V.V. A visual study on flow pattern around the strip moving uniformly in a continuously stratified fluid // J. Visualiz. - 2004. - Vol. 7, no. 2. - P. 127-134. DOI
12. Volkov K.N. Primenenie metoda kontrol’nogo ob"ema dla resenia zadac mehaniki zidkosti i gaza na nestrukturirovannyh setkah // Vycislitel’nye metody i programmirovanie. - 2005. - T. 6, No 1. - S. 43-60.
13. Cirkov D.V., Cernyj S.G. Sravnenie tocnosti i shodimosti nekotoryh TVD-shem // ZVT. - 2000. - T. 5, No 5. - S. 86-107.
14. Jang D.S., Jetli R., Acharya S. Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems // Numer. Heat Tr. A-Appl. - 1986. - Vol. 10, no. 3. - P. 209-228. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.