Three-dimensional coupled numerical model of creeping flow of viscous fluid

Authors

  • Vladimir Vasilievich Pak Il'ichev Pacific Oceanological Institute FEB RAS

DOI:

https://doi.org/10.7242/1999-6691/2015.8.1.6

Keywords:

three-dimensional coupled model, Stokes equations, Reynolds equations, lubrication approximation, perturbation method, finite element method, gradient projection method

Abstract

A three-dimensional numerical coupled model is developed to describe creeping flow in a computational domain that consists of thick viscous layer overlaid by a thin multi-layered viscous sheet. The sheet is assumed to have the lower density than the layer. The model couples the Stokes equations describing the flow in the layer and the Reynolds equations describing the flow in the sheet. We investigate the long-time behavior of the flow in the sheet using the asymptotic method and derive an ordinary differential equation with respect to sheet boundary displacements and velocities at the interface between the sheet and layer. Applying the obtained equation as an internal boundary condition, we couple the Stokes and Reynolds equations. Numerical implementation is fulfilled by the modified finite element method combined with the projection gradient method. The examined domain is discretized with hexahedrons. Piecewise square basic functions are used. The proposed model enables different-type hydrodynamic equations to be coupled without any iterative improvements. This reduces significantly computational costs in comparison with the available coupled models. Numerical experiments confirm a good accuracy of the developed three-dimensional coupled model.

Downloads

Download data is not yet available.

References

Schubert G., Turcotte D.L., Olsen P. Mantle convection in the Earth and planets. - Cambridge: Cambridge University Press, 2001. - 956 p. DOI
2. Tan E., Choi E., Nhoutireddy P., Gurnis M., Aivazis M. GeoFramework: Coupling multiple models of mantle convection within a computational framework // Geochemistry. Geophysics. Geosystems. - 2006. - Vol. 7, no. 6. - Q06001. DOI
3. Lavier L.L., Manatschal G. A mechanism to thin the continental lithosphere at magma-poor margins // Nature. - 2006. - Vol. 440, no. 7082. - P. 324-328. DOI
4. Bonnardot M.-A., Hassani R., Tric E. Numerical modelling of lithosphere-asthenosphere interaction in a subduction zone // Earth Planet. Sc. Lett. - 2008. - Vol. 272, no. 3-4. - P. 698-708. DOI
5. Pak V.V. Primenenie metola proekcii gradienta k cislennomu reseniu sovmestnoj sistemy uravnenij Stoksa i uravnenij Rejnol’dsa // Vycisl. meh. splos. sred. - 2014. - T. 7, No 1. - S. 23-29. DOI
6. Craster R.V., Matar O.K. Dynamics and stability of thin liquid films // Rev. Mod. Phys. - 2009. - Vol. 81, no. 3. - P. 1131-1198. DOI
7. Pak V.V. Primenenie metola proekcii gradienta k cislennomu reseniu trehmernoj zadaci Stoksa // Vycisl. meh. splos. sred. - 2010. - T. 3, No 2. - S. 93-102. DOI
8. Fortin M. Old and new finite-elements for incompressible flows // Int. J. Numer. Meth. Fl. - 1981. - Vol. 1, no. 4. - P. 347-364. DOI
9. Borisov V.G. O paraboliceskih kraevyh zadacah s malym parametrom pri proizvodnyh po t // Matem. sb. - 1988. - T. 131(173), No 3(11). - C. 293-308. DOI
10. Hu J., Millet S., Botton V., Ben Hadid H., Henry D. Inertialess temporal and spatio-temporal stability analysis of the two-layer film flow with density stratification // Phys. Fluids. - 2006. - Vol. 18, no. 10. - 104101. DOI
11. Trubicyn V.P., Baranov A.A., Evseev A.N., Trubicyn A.P. Tocnye analiticeskie resenia uravnenia Stoksa dla testirovania uravnenij mantijnoj konvekcii s peremennoj vazkost’u // Fizika Zemli. - 2006. - No 7. - S. 3-11. DOI

Published

2015-03-31

Issue

Section

Articles

How to Cite

Pak, V. V. (2015). Three-dimensional coupled numerical model of creeping flow of viscous fluid. Computational Continuum Mechanics, 8(1), 71-80. https://doi.org/10.7242/1999-6691/2015.8.1.6