Continuum models in dynamics of granular media. Review
DOI:
https://doi.org/10.7242/1999-6691/2015.8.1.4Keywords:
granular medium, equations of state, constitutive relations, dynamicsAbstract
Mechanical models and equations of state used for solving dynamic problems in mechanics of granular media are reviewed. We study elastic, hypoelastic, hyperelastic, elastoplastic, and hydrodynamic models. Within the framework of hyperelasticity several generalized models, including the modified Arruda-Boyce model and some other hyperelastic models, are examined to investigate the formation of hysteresis loops during cyclic loading. We find that due to the switching mechanism the hysteresis loops can also be studied using the concept of hyperelasticity. The elastic-plastic models with one or several plastic flow surfaces, as well as the models with continuously distributed flow surfaces (microplasticity), are analyzed. Some newly developed models without plastic flow surfaces are considered (hypoplasticity, barodesy). Special attention is given to the elastic-plastic models with isotropic hardening and the models used to analyze the formation of hysteresis loops. The elastic-plastic models for studying non-degenerate hysteresis loops under cyclic loading conditions are examined as well. The comparative analysis of elastic, hyperelastic, hypoelastic and various elastic-plastic models reveals that under quasistatic cyclic loading conditions the cam-clay and other critical state models that take into account both the hardening and softening phenomena in real granular materials appear to be the most suitable ones for modeling hysteresis loops in cohesionless granular materials. However, the study of non-stationary dynamical processes requires finding appropriate models. For such problems, the combination of hyperelastic and hypoelastic models provides a simple adequate tool for taking into account the nucleation effects associated with the formation of local discontinuities. This is mainly due to the capabilities of hyper- and hypoelastic models to account for variations in elastic parameters and, consequently, in elastic wave velocities under wave propagation. In the future we plan to combine hyper- or hypo-elastic models with cam-clay or other critical state models.
Downloads
References
Adamov A.A., Matveenko V.P., Trufanov N.A., Sardakov I.N. Metody prikladnoj vazkouprugosti. - Ekaterinburg: UrO RAN, 2003. - 412 s.
2. Vasin R.A. Opredelausie sootnosenia teorii plasticnosti // Itogi nauki i tehniki. Seria: Mehanika deformiruemogo tverdogo tela. - M.: VINITI, 1990. - T. 21. - S. 3-75.
3. Ivlev D.D. Teoria ideal’noj plasticnosti. - M.: Nauka, 1966. - 232 s.
4. Il’usin A.A. Plasticnost’. Osnovy obsej matematiceskoj teorii plasticnosti. - M.: Izd-vo AN SSSR, 1963. - 271 s.
5. Kacanov L.M. Osnovy teorii plasticnosti. - M.: Nauka, 1969. - 420 s.
6. Klusnikov V.D. Matematiceskaa teoria plasticnosti. - M.: Izd-vo Mosk. un-ta, 1979. - 208 s.
7. Nikolaevskij V.N. Sobranie trudov. Geomehanika. Tom 1. Razrusenie i dilatansia. Neft’ i gaz. - M.-Izevsk: NIC <>, Institut komp’uternyh issledovanij, 2010. - 640 s.
8. Pozdeev A.A., Trusov P.V., Nasin U.I. Bol’sie uprugoplasticeskie deformacii: teoria, algoritmy, prilozenia. - M.: Nauka, 1986. - 232 s.
9. Rabotnov U.N. Elementy nasledstvennoj mehaniki tverdyh tel. - M.: Nauka, 1977. - 384 s.
10. Sedov L.I. Mehanika splosnoj sredy. - M.: Nauka, 1970. - Tom 2. - 568 s.
11. Truesdell C., Toupin R. The classical field theories // Handbuch der Physik, vol. III/1 / Ed. by S. Flugge. - Springer, 1960.
12. Ericksen J.L. Tensor Fields. Handbuch der Physik, vol. III / 1 / Ed. by S. Flugge. - Springer, 1960.
13. Wang C.-C., Truesdell C. Introduction to rational elasticity. - Springer, 1973.
14. Jackson R. Some mathematical and physical aspects of continuum models for the motion of granular materials // Theory of dispersed multiphase flow / Ed. by R.E. Meyer. - Academic Press, San Diego, 1983. - Pp. 291-337.
15. Nesterenko V.F. Dynamics of heterogeneous materials. - Springer-Verlag, New York, 2001.
16. Nesterenko V.F., Herbold E.B., Benson D.J., Jeonghoon Kim J., Daraio C. Strongly nonlinear behavior of granular chains and granular composites // J. Acoust. Soc. Am. - 2008. - Vol. 123, no. 5. - P. 3271. DOI
17. Herbold E.B., Nesterenko V.F., Benson D.J., Cai J., Vecchio K.S., Jiang F., Addiss J.W., Walley S.M., Proud W.G. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials // J. Appl. Phys. - 2008. - Vol. 104. - 103903. DOI
18. Sen S., Hong J., Bang J., Avalos E., Doney R. Solitary waves in the granular chain // Phys. Rep. - 2008. - Vol. 462, no. 2. - P. 21-66. DOI
19. Molinari A., Daraio Ch. Stationary shocks in periodic highly nonlinear granular chains // Phys. Rev. - 2009. - Vol. E 80. - 056602. DOI
20. Sun J., Sundaresan S. Radial hopper flow prediction using a constitutive model with microstructure evolution // Powder Technol. - 2013. - Vol. 242. - P. 81-85. DOI
21. Lomakin E.V., Rabotnov U.N. Sootnosenia teorii uprugosti dla izotropnogo raznomodul’nogo tela // MTT. - 1978. - No 6. - S. 29-34.
22. Lomakin E.V. Nelinejnye deformirovania materialov, soprotivlenie kotoryh zavisit ot vida naprazennogo sostoania // MTT. - 1980. - No 4. - S. 92-99.
23. Maslov V.P., Mosolov P.P. Obsaa teoria resenij uravnenij dvizenia raznomodul’noj uprugoj sredy // PMM. - 1985. - T. 49. - S. 419-437.
24. Volokh K.Y. Hyperelasticity with softening for modeling materials failure // J. Mech. Phys. Solids. - 2007. - Vol. 55, no. 10. - P. 2237-2264. DOI
25. Kuznetsov S.V. Direct boundary integral equation method in the theory of elasticity // Quart. Appl. Math. - 2005. - Vol. 63. - P. 455-467.
26. Norris A.N., Johnson D.L. Nonlinear elasticity of granular media // J. Appl. Mech. - 1997. - Vol. 64, no. 1. - P. 39-49. DOI
27. Coste C., Gilles B. On the validity of Hertz contact law for granular material acoustics // Eur. Phys. J. B. - 1999. - Vol. 7, no. 1. - P. 155-168. DOI
28. Ambarcuman S.A., Hacatran A.A. Osnovnye uravnenia teorii uprugosti dla materialov, raznosoprotivlausihsa rastazeniu i szatiu // Inzenernyj zurnal. MTT. - 1966. - No 2. - S. 44-53.
29. Ambarcuman S.A. Raznomodul’naa teoria uprugosti. - M.: Nauka, 1982. - 320 c.
30. Truesdell C. The simplest rate theory of pure elasticity // Commun. Pur. Appl. Math. - 1955. - Vol. 8, no. 1. - P. 123-132. DOI
31. Truesdell C. Hypo-elasticity // J. Rat. Mech. Anal. - 1955. - Vol. 4. - P. 83-133, p. 1019-1020.
32. Truesdell C. Remarks on hypo-elasticity // J. Res. Nat. Bur. Stand. - 1963. - Vol. 67B, no. 3. - P. 141-143. DOI
33. Thomas T.Y. Combined elastic and Prandtl-Reuss stress-strain relations // Proc. Nat. Acad. Sci. USA. - 1955. - Vol. 41. - P. 720-726. DOI
34. Green A.E. Hypo-elasticity and plasticity // Proc. Roy. Soc. London. - 1956. - Vol. A234. - P. 46-59. DOI
35. Gurtin M.E. On the hypoelastic formulation of plasticity using the past maximum of stress // J. Appl. Mech. - 1983. - Vol. 50, no. 4a. - P. 894-896. DOI
36. Bernstein B., Ericksen J.L. Work functions in hypo-elasticity // Arch. Ration. Mech. An. - 1958. - Vol. 1, no. 1. - P. 396-409. DOI
37. Varley E., Dunwoody J. The effect of non-linearity at an acceleration wave // J. Mech. Phys. Solids. - 1965. - Vol. 13, no. 1. - P. 17-28. DOI
38. Nariboli G.A., Juneja B.L. Wave propagation in an initially stressed hypo-elastic medium // Int. J. Nonlinear Mech. - 1971. - Vol. 6, no. 1. - P. 13-25. DOI
39. Chandrasekharaiah D.S. On hypo-elastic transverse surface waves in an internal stratum // Appl. Sci. Res. - 1976. - Vol. 32, no. 4. - P. 347-353. DOI
40. Chandrasekharaiah D.S. On Love waves in a stratified hypoelastic solid with material boundary // Proc. Indian Acad. Sci., Sec. A. - 1977. - Vol. 86, no. 4. - P. 383-391. DOI
41. Szabo L., Balla M. Comparison of some stress rates // Int. J. Solids Struct. - 1989. - Vol. 25, no. 3. - P. 279-297. DOI
42. Kleiber M. On errors inherent in commonly accepted rate forms of the elastic constitutive law // Arch. Mech. - 1986. - Vol. 38. - P. 271-279.
43. Simo J.C., Pister K.S. Remarks on rate constitutive equations for finite deformation problems: computational implications // Comput. Method. Appl. M. - 1984. - Vol. 46, no. 2. - P. 201-215. DOI
44. Mullins L. Softening of rubber by deformation // Rubber Chem. Technol. - 1969. - Vol. 42, no. 1. - P. 339-362. DOI
45. Ogden R.W., Roxburgh D.G. A pseudo-elastic model for the Mullins effect in filled rubber // Proc. Roy. Soc. Lond. A. - 1999. - Vol. 455, no. 1988. - P. 2861-2877. DOI
46. Ogden R.W. Pseudo-elasticity and stress softening // Nonlinear elasticity: Theory and applications / Ed. by Y.B. Fu, R.W. Ogden. - Cambridge: Cambridge University Press, 2001. - P. 491-522.
47. Horgan C.O., Saccomandi G. Phenomenological hyperelastic strain-stiffening constitutive models for rubber // Rubber Chem. Technol. - 2006. - Vol. 79, no. 1. - P. 152-169. DOI
48. De Tommasi D. Puglisi G., Saccomandi G. A micromechanics-based model for the Mullins effect // J. Rheol. - 2006. - Vol. 50. - P. 495-512. DOI
49. Arruda E.M., Boyce M.C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials // J. Mech. Phys. Solids. - 1993. - Vol. 41, no. 2. - P. 389-412. DOI
50. Boyce M.C., Yeh O., Socrate S., Kear K., Shaw K. Micromechanics of cyclic softening in thermoplastic vulcanizates // J. Mech. Phys. Solids. - 2001. - Vol. 49, no. 6. - P. 1343-1360. DOI
51. Cho H., Renaud G.R., Boyce M.C. Constitutive modeling of the rate-dependent resilient and dissipative large deformation behavior of a segmented copolymer polyuria // Soft Matter. - 2013. - Vol. 9. - P. 6319-6330. DOI
52. Bruhns O.T. The Prandtl-Reuss equations revisited // ZAMM J. Appl. Math. Mech. - 2014. - Vol. 94, no. 3. - P. 187-202. DOI
53. Rakic D., Zivkovic M., Slavkovic R., Kojic M. Stress integration for the Drucker-Prager material model without hardening using the incremental plasticity theory // Journal of the Serbian Society for Computational Mechanics. - 2008. - Vol. 2, no. 1. - P. 80-89.
54. Kukudzhanov V.N. Numerical continuum mechanics. De Gruyter Studies in Mathematical Physics 15. - Berlin: De Gruyter, 2013.
55. Belytschko T., Liu W.K., Moran B., Elkhodary Kh.I. Nonlinear finite elements for continua and structures. - London: Wiley, 2014.
56. Dafalias Y.F., Popov E.P. A model of nonlinearly hardening materials for complex loading // Acta Mech. - 1975. - Vol. 21, no. 3. - P. 173-192. DOI
57. Chaboche J.L. Constitutive equation for cyclic plasticity and cyclic viscoplasticity // Int. J. Plasticity. - 1989. - Vol. 5, no. 3. - P. 247-302. DOI
58. Chaboche J., Cailletaud G. Integration methods for complex plastic constitutive equations // Comput. Method. Appl. M. - 1996. - Vol. 133, no. 1-2. - P. 125-155. DOI
59. Wallin M., Ristinmaa M. Deformation gradient based kinematic hardening model // Int. J. Plasticity. - 2005. - Vol. 21, no. 10. - P. 2025-2050. DOI
60. Pietryga M.P., Vladimirov I.N., Reese S. A finite deformation model for evolving flow anisotropy with distortional hardening including experimental validation // Mech. Mater. - 2012. - Vol. 44. - P. 163-173. DOI
61. Menetrey Ph., Willam K.J. Triaxial failure criterion for concrete and its generalization // ACI Struct. J. - 1995. - Vol. 92. - P. 311-318.
62. Rajchenbach J. Flow in powders: From discrete avalanches to continuum regime // Phys. Rev. Lett. - 1990. - Vol. 65. - P. 2221-2224. DOI
63. Nedderman R.M. Statics and kinematics of granular materials. - Cambridge University Press, 2005.
64. Borja R.I., Sama K.M., Sanz P.F. On the numerical integration of three-invariant elastoplastic constitutive models // Comput. Method. Appl. M. - 2003. - Vol. 192, no. 9-10. - P. 1227-1258. DOI
65. Rycroft Ch.H., Kamrin K., Bazant M.Z. Assessing continuum postulates in simulations of granular flow // J. Mech. Phys. Solids. - 2009. - Vol. 57, no. 5. - P. 828-839. DOI
66. Krenk S. Characteristic state plasticity for granular materials: Part I: Basic theory // Int. J. Solids Struct. - 2000. - Vol. 37, no. 43. - P. 6343-6360. DOI
67. Khoei A.R., Azami A.R. A single cone-cap plasticity with an isotropic hardening rule for powder materials // Int. J. Mech. Sci. - 2005. - Vol. 47, no. 1. - P. 94-109. DOI
68. Potts D.M., Gens A. The effect of the plastic potential in boundary value problems involving plane strain deformation // Int. J. Numer. Anal. Met. - 1984. - Vol. 8, no. 3. - P. 259-286. DOI
69. Krenk S. A generalized Cam-Clay model // IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials. Solid Mechanics and Its Applications. - 2002. - Vol. 87. - P. 33-38. DOI
70. Borja R.I. Cam-Clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media // Comput. Method. Appl. M. - 2004. - Vol. 193, no. 48-51. - P. 5301-5338. DOI
71. Khoei A.R., Azami A.R. A single cone-cap plasticity with an isotropic hardening rule for powder materials // Int. J. Mech. Sci. - 2005, vol. 47, no. 1. - P. 94-109. DOI
72. Das A., Nguyen G.D., Einav I. Compaction bands due to grain crushing in porous rocks: A theoretical approach based on breakage mechanics // J. Geophys. Res.-Sol. Ea. - 2011. - Vol. 116, no. B8. - P. 1-14. DOI
73. Das A., Nguyen G.D., Einav I. The propagation of compaction bands in porous rocks based on breakage mechanics // J. Geophys. Res. -Sol. Ea. - 2012. - Vol. 118, no. 5. - P. 2049-2066. DOI
74. Lade P., Yamamuro J., Bopp P. Significance of particle crushing in granular materials // J. Geotech. Eng-ASCE. - 1996. - Vol. 122, no. 4. - P. 309-316. DOI
75. Carter J.P., Booker J.R., Wroth C.P. A critical state soil model for cyclic loading // Soil mechanics - transient and cyclic loads / Ed. by G.N. Pande, O.L. Zienkiewicz. - London: Wiley, 1982. - P. 219-252.
76. Islinskij A.U. Nekotorye primenenia statistiki k opisaniu zakonov deformirovania tel // Izv. AN SSSR. OTN. - 1944. - No 9. - S. 583-590.
77. Pal’mov V.A. Kolebania uprugo-plasticeskih tel. - M.: Nauka, 1976. - 328 s.
78. Pal’mov V.A. Kolebania uprugo-plasticeskih tel // MTT. - 1971. - No 4. - S. 122-130.
79. Kadasevic U.I., Novozilov V.V. Ob ucete mikronaprazenij v teorii plasticnosti // MTT. - 1968. - No 3. - S. 82-91.
80. Kadasevic U.I., Novozilov V.V. O vlianii nacal’nyh mikronaprazenij na makroskopiceskuu deformaciu polikristallov // PMM. - 1968. - T. 32, No 5. - S. 908-922.
81. Davidenkov N.N. O rasseanii energii pri vibraciah // ZTF. - 1938. - T. 8, No 6. - S. 483-499.
82. Karnopp D., Scharton T.D. Plastic deformation in random vibration // J. Acoust. Soc. Am. - 1966. - Vol. 39, no. 6. - P. 1154-1161. DOI
83. Kolymbas D. A generalized hypoelastic constitutive law // Proc. of the 11th International Conference on Soil Mechanics and Foundation Engineering, 12-16 August 1985, San Francisco. - Vol. 5. - P. 2626.
84. Gudehus G. A comprehensive constitutive equation for granular materials // Soils and Foundations. - 1996. - Vol. 36, no. 1. - P. 1-12. DOI
85. Wolffersdorff von P.-A. A hypoplastic relation for granular materials with a predefined limit state surface // Mech. Cohes.-Frict. Mat. - 1996. - Vol. 1, no. 3. - P. 251-271. DOI
86. Kolymbas D. Barodesy: The next generation of hypoplastic constitutive models for soils // Computational Engineering / Ed. by G. Hofstetter. - Springer International Publishing Switzerland, 2014. - P. 43-58. DOI
87. Kolymbas D. Barodesy as a novel hypoplastic constitutive theory based on the asymptotic behaviour of sand // Geotechnik. - 2012. - Vol. 35, no. 3. - P. 187-197. DOI
88. Jaeger H.M., Nagel S.R., Behringer R.P. Granular solids, liquids, and gases // Rev. Mod. Phys. - 1996. - Vol. 68. - P. 1259-1273. DOI
89. Midi G.D.R. On dense granular flows // Eur. Phys. J. E. - 2004. - Vol. 14, no. 4. - P. 341-365. DOI
90. Rycroft C.H., Kamrin K., Bazant M.Z. Assessing continuum postulates in simulations of granular flow // J. Mech. Phys. Solids. - 2009. - Vol. 57, no. 5. - P. 828-839. DOI
91. Khoei A.R., Mohammadnejad T. Numerical modeling of multiphase fluid flow in deforming porous media: A comparison between two- and three-phase models for seismic analysis of earth and rockfill dams // Comput. Geotech. - 2011. - Vol. 38, no. 2. - P. 142-166. DOI
92. Hashiguchi K. Mechanical requirements and structures of cyclic plasticity models // Int. J. Plasticity. - 1993. - Vol. 9, no. 6. - P. 721-748. DOI
93. Halama R. A modification of AbdelKarim-Ohno model for ratcheting simulations // Technical Gazette. - 2008. - Vol. 15, no. 3. - P. 3-9.
94. Vincent L. Calloch S., Marquis D. A general cyclic plasticity model taking into account yield surface distortion for multiaxial ratcheting // Int. J. Plasticity. - 2004. - Vol. 20, no. 10. - P.1817-1850. DOI
95. Numerical models in geomechanics // Proc. of the 6th International Symposium Numog VI, Montreal, Canada, 2-4 July 1997. - 106 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.