Natural vibrations of non-circular cylindrical shells partially filled with fluid with sloshing of free surface

Authors

  • Sergey Arkadievich Bochkarev Institute of Continuous Media Mechanics UB RAS
  • Sergey Vladimirovich Lekomtsev Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2014.7.4.45

Keywords:

ylindrical tank, circular and elliptical cross-sections, partial filling with fluid, sloshing, modal analysis, FEM

Abstract

The dynamic behaviour of thin-walled reservoirs containing an ideal fluid is investigated taking into account the effects of hydroelastic interaction and sloshing of the free liquid surface. A mathematical statement of the problem is based on the principle of virtual displacements, which makes it possible to consider the pre-stressed non-deformed state of the shell caused by various force factors, for example, by hydrostatic pressure. The strains of the elastic structure are calculated using the relations of the Kirchhoff-Love theory of thin shells. The behavior of compressible liquid is described by the linearized Euler equations for acoustic medium, which are transformed by the Bubnov-Galerkin method. We use appropriate dynamic boundary conditions to take into account waves (or the sloshing effect) on the free surface of the liquid. The behavior of partially filled cylindrical reservoirs of arbitrary cross-sections was analyzed using the developed numerical procedure based on the three dimensional implementation of the finite element method. It has been shown that allowing for free surface sloshing considerably reduces the eigenfrequencies of vibrations of the examined systems. Based on the modal analysis, a classification of the eigenmodes of free surface oscillations of the liquid in the vertical shells of circular and elliptical cross-sections has been done. The analysis has shown that in the case when the vibration frequencies of liquid differ from the vibration frequencies of the shell filled with fluid the frequency spectrum of the system splits into two parts due to sloshing.

Downloads

Download data is not yet available.

References

Amabili M. Free vibration of partially filled, horizontal cylindrical shells // J. Sound Vib. - 1996. - Vol. 191, no. 5. - P. 757-780. DOI
2. Selmane A., Lakis A.A. Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid // J. Fluid. Struct. - 1997. - Vol. 11, no. 1. - P. 111-134. DOI
3. Postnov V.A. Novaa variacionnaa formulirovka problemy vzaimodejstvia uprugih konstrukcij s zidkost’u // Problemy procnosti i plasticnosti. - 2000. - No 62. - S. 5-12.
4. Ergin A., Temarel P. Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell // J. Sound Vib. - 2002. - Vol. 254, no. 5. - P. 951-965. DOI
5. Ergin A., Price W.G., Randall R., Temarel P. Dynamic characteristics of a submerged, flexible cylinder vibrating in finite water depths // J. Ship Res. - 1992. - Vol. 36, no. 2. - P. 154-167.
6. Xiang Y., Huang Y. A novel semi-analytical method for solving acoustic radiation from longitudinally stiffened infinite non-circular cylindrical shells in water // Acta Mech. Solida Sin. - 2005. - Vol. 18, no. 1. - P. 1-12.
7. Firouz-Abadi R.D., Noorian M.A., Haddadpour H. A fluid-structure interaction model for stability analysis of shells conveying fluid // J. Fluid. Struct. - 2010. - Vol. 26, no. 5. - P. 747-763. DOI
8. Cho J.R., Lee H.W., Ha S.Y. Finite element analysis of resonant sloshing response in 2-D baffled tank // J. Sound Vib. - 2005. - Vol. 288, no. 4-5. - P. 829-845. DOI
9. Mitra S., Sinhamahapatra K.P. Slosh dynamics of liquid-filled containers with submerged components using pressure-based finite element method // J. Sound Vib. - 2007. - Vol. 304, no. 1-2. - P. 361-381. DOI
10. Bermudez A., Rodriguez R. Finite element analysis of sloshing and hydroelastic vibrations under gravity // ESAIM-Math. Model. Num. - 1999. - Vol. 33, no. 2. - P. 305-327. DOI
11. Ibrahim R.A. Liquid sloshing dynamics: Theory and applications. - Cambridge: Cambridge University Press, 2005. - 970 p.
12. Andrianarison O., Ohayon R. Compressibility and gravity effects in internal fluid-structure vibrations: Basic equations and appropriate variational formulations // Comput. Method. Appl. M. - 2006. - Vol. 195, no. 17-18. - P. 1958-1972. DOI
13. Popov G., Sankar S., Sankar T.S. Shape optimization of elliptical road containers due to liquid load in steady-state turning // Vehicle Syst. Dyn. - 1996. - Vol. 25, no. 3. - P. 203-221. DOI
14. Hasheminejad S.M., Aghabeigi M. Liquid sloshing in half-full horizontal elliptical tanks // J. Sound Vib. - 2009. - Vol. 324, no. 1-2. - P. 332-349. DOI
15. Koh H.M., Kim J.K., Park J.-H. Fluid-structure interaction analysis of 3-D rectangular tanks by a variationally coupled BEM-FEM and comparison with test results // Earthquake Eng. Struct. D. - 1998. - Vol. 27, no. 2. - P. 109-124. DOI
16. Amiri M., Sabbagh-Yazdi S.R. Ambient vibration test and finite element modeling of tall liquid // Thin Wall. Struct. - 2009. - Vol. 49, no. 8. - P. 974-983. DOI
17. Lindholm U.S., Kana D.D., Abramson H.N. Breathing vibrations of a circular cylindrical shell with an internal liquid // J. Aeronaut. Sci. - 1962. - Vol. 29, no. 9. - P. 1052-1059. DOI
18. Maheri M.R., Severn R.T. Dynamic investigations of cylindrical structures in contact with liquid // Steel structures: Advances in design and construction / Ed. R. Narayanan. - London: Elsevier, 1987. - P. 643-652.
19. Amabili M., Dalpiaz G. Breathing vibrations of a horizontal circular cylindrical tank shell, partially filled with liquid // J. Vib. Acoust. - 1995. - Vol. 117, no. 2. - P. 187-191. DOI
20. Mazuch T., Horacek J., Trnka J., Vesely J. Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement // J. Sound Vib. - 1996. - Vol. 193, no. 3. - P. 669-690. DOI
21. Amabili M., Arziera R., Negri A. Experimental study on large-amplitude vibrations of water-filled circular cylindrical shells // J. Fluid. Struct. - 2002. - Vol. 16, no. 2. - P. 213-227. DOI
22. Sapoznikov S.B., Fot E.A., Mokeev V.V. Eksperimental’noe i cislennoe issledovanie kolebanij tonkostennoj obolocki, zapolnennoj vazkouprugoj zidkost’u // Izvestia CNC UrO RAN. - 2004. - No 4. - S. 66-70.
23. El Damatty A.A., Saafan M.S., Sweedan A.M.I. Experimental study conducted on a liquid-filled combined conical tank model // Thin Wall. Struct. - 2005. - Vol. 43, no. 9. - P. 1398-1417. DOI
24. Udin A.S. Statika i kolebania obolocek vrasenia s zidkost’u. - Rostov-na-Donu: Izd-vo UFU, 2014. - 204 s.
25. Lakis A.A., Neagu S. Free surface effects on the dynamics of cylindrical shells partially filled with liquid // J. Sound Vib. - 1997. - Vol. 207, no. 2. - P. 175-205. DOI
26. Amabili M., Paidoussis M.P., Lakis A.A. Vibrations of partially filled cylindrical tanks with ring-stiffeners and flexible bottom // J. Sound Vib. - 1998. - Vol. 213, no. 2. - P. 259-299. DOI
27. Amabili M. Vibrations of circular tubes and shells filled and partially immersed in dense fluids // J. Sound Vib. - 1999. - Vol. 221, no. 4. - P. 567-585. DOI
28. Amabili M. Eigenvalue problems for vibrating structures coupled with quiescent fluids with free surface // J. Sound Vib. - 2000. - Vol. 231, no. 1. - P. 79-97. DOI
29. Zhu C.F., Tang G.A., Zhang M.Y. Coupling analysis of liquid sloshing and structural vibration using general software // J. Press. Vess.-T. ASME. - 2014. - Vol. 137, no. 1. - 011304. DOI
30. Fletcer K. Vycislitel’nye metody v dinamike zidkostej. - M.: Mir, 1991. - T. 2. - 552 s.
31. Bockarev S.A., Matveenko V.P. Cislennoe modelirovanie ustojcivosti nagruzennyh obolocek vrasenia pri vnutrennem tecenii zidkosti // PMTF. - 2008. - T. 49, No 2. - S. 313-322. DOI
32. Alfutov N.A., Zinov’ev P.A., Popov V.G. Rascet mnogoslojnyh plastin i obolocek iz kompozicionnyh materialov. - Moskva: Masinostroenie, 1984. - 264 s.
33. Zenkevic O.S. Metod konecnyh elementov v tehnike. - M.: Mir, 1975. - 544 s.
34.Lehoucq R.B., Sorensen D.C. Deflation techniques for an implicitly restarted Arnoldi iteration // SIAM J. Matrix Anal. A. - 1996. - Vol. 17, no. 4. - P. 789-821. DOI

Published

2014-12-30

Issue

Section

Articles

How to Cite

Bochkarev, S. A., & Lekomtsev, S. V. (2014). Natural vibrations of non-circular cylindrical shells partially filled with fluid with sloshing of free surface. Computational Continuum Mechanics, 7(4), 471-480. https://doi.org/10.7242/1999-6691/2014.7.4.45