FEM implementation of a stress-based geometrical immersion method by example of the solution of plane elastic problems
DOI:
https://doi.org/10.7242/1999-6691/2014.7.4.44Keywords:
Kastilyano's variational principle, geometrical immersion, method, finite element method, theory of elasticityAbstract
The features specific to numerical implementation of a stress-based geometrical immersion method used to solve the boundary value elastic problem for an isotropic homogeneous body with a complex spatial configuration are discussed. The essence of the geometrical immersion method consists in constructing a convergent iterative procedure to find a solution for the area of complex spatial configuration as a sequence of problem solutions for some area of a more simple (canonical) form. An iterative procedure for the solution of the variational equation of the geometrical immersion method and a procedure for constructing its discrete analogue using the stress-based finite element method for the plane elastic problem in a Cartesian coordinate system are formulated. A variant of the stress function finite element is used to determine stress approximations that satisfy equilibrium equations. The application of the method is demonstrated by example of the solution of the plane problem for an elastic plate with a circular cutout. A good coincidence between the results for stress fields and the exact analytical and numerical solutions found by the traditional displacement-based finite element method is obtained. Particular emphasis is placed upon the ways to specify static boundary conditions, which are of primary value for this variational formulation using the procedure of modifying a compliance matrix of the finite element system and the Lagrange multipliers method. An example of the numerical solution for the problem of incompressible elastic material is presented.
Downloads
References
Bate K.-U. Metody konecnyh elementov. - M.: Fizmatlit, 2010. - 1024 s.
2. Berdicevskij V.L. Variacionnye principy mehaniki splosnoj sredy. - M.: Nauka, 1983. - 448 s.
3. Gallager R. Metod konecnyh elementov: Osnovy. - M.: Mir, 1984. - 428 s.
4. Girija Vallabhan C.V., Muluneh Azene. A finite element model for plane elasticity problems using the complementary energy theorem // Int. J. Numer. Meth. Eng. - 1982. - Vol. 18, no. 2. - P. 291-309. DOI
5. Sarigul N., Gallagher R.H. Assumed stress function finite element method: Two-dimensional elasticity // Int. J. Numer. Meth. Eng. - 1989. - Vol. 28, no. 7. - P. 1577-1598. DOI
6. Tukalov U.A. Resenie zadac stroitel’noj mehaniki metodom konecnyh elementov v naprazeniah na osnove funkcionala dopolnitel’noj energii i principa vozmoznyh peremesenij / Diss... dokt. tehn. nauk: 05.23.17. - Kirov, VatGU, 2006. - 314 s.
7. Watwood V.B. Jr., Hartz B.J. An equilibrium stress field model for finite element solutions of two-dimensional elastostatic problems // Int. J. Solids Struct. - 1968. - Vol. 4, no. 9. - P. 857-873. DOI
8. Fraeijs de Veubeke B. Displacement and equilibrium models in the finite element method // Int. J. Numer. Meth. Eng. - 2001. - Vol. 52, no. 3. - P. 287-342. DOI
9. Pin Tong, Pian Theodore H.H. A variational principle and the convergence of a finite-element method based on assumed stress distribution // Int. J. Solids Struct. - 1969. - Vol. 5, no. 5. - P. 463-472. DOI
10. Marcuk G.I. Metody vycislitel’noj matematiki. - M.: Nauka, 1980. - 536 s.
11. Konovalov A.N. Metod fiktivnyh oblastej v zadacah krucenia // Cislennye metody mehaniki splosnoj sredy. - 1973. - T. 4, No 2. - Novosibirsk: Izd-vo ITPM SO AN SSSR. - S. 109-115.
12. Sardakov I.N., Trufanov N.A., Matveenko V.P. Metod geometriceskogo pogruzenia v teorii uprugosti. - Ekaterinburg: Uro RAN, 1999. - 298 s.
13. Derevankina P.O., Kuznecova U.S., Trufanov N.A., Sardakov I.N. Teoreticeskie polozenia metoda geometriceskogo pogruzenia v naprazeniah // Vycisl. meh. splos. sred. - 2014. - T. 7, No 3. - S. 317-330. DOI
14. Trufanov N.A., Sardakov I.N. Primenenie metoda geometriceskogo pogruzenia dla cislennogo rasceta prostranstvennyh konstrukcij // Rascety na procnost’. - 1990. - No 31. - C. 127-134.
15. Sardakov I.N. Cislennaa realizacia differencial’noj postanovki metoda geometriceskogo pogruzenia dla dvumernyh zadac teorii uprugosti // Modeli i metody issledovania uprugogo i neuprugogo povedenia materialov i konstrukcij. - Sverdlovsk: UNC AN SSSR. - 1987. - C. 7-11.
16. Bulavin P.V., Sardakov I.N. Granicno-elementnyj podhod k reseniu trehmernyh zadac teorii uprugosti metodom geometriceskogo pogruzenia // PMM. - 1995. - T. 59, No 2. - S. 252-258.
17. Matveenko V.P., Osipanov A.A. Konecno-elementnaa realizacia metoda geometriceskogo pogruzenia primenitel’no k ploskoj zadace teorii uprugosti v naprazeniah // Modeli i metody issledovania uprugogo i neuprugogo povedenia materialov i konstrukcij. - Sverdlovsk: UNC AN SSSR.- 1987. - C. 11-16.
18. Norri D., de Friz Z. Vvedenie v metod konecnyh elementov. - M.: Mir, 1981. - 304 s.
19. Lur’e A.I. Teoria uprugosti. - M.: Nauka, 1970. - 940 s.
20. Samarskij A.A., Gulin A.V. Cislennye metody: Uceb. posobie. - M.: Nauka, 1989. - 432 s.
21. Mushelisvili N.I. Nekotorye osnovnye zadaci matematiceskoj teorii uprugosti. - M.: Nauka 1966. - 708 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.