Structure-mechanical model for plasto-elastic behavior of soft magnetic elastomers

Authors

  • Petr Viktorovich Melenev Institute of Continuous Media Mechanics UB RAS
  • Vladimir Nikolaevich Kovrov Institute of Continuous Media Mechanics UB RAS
  • Yuriy Lvovich Raikher Institute of Continuous Media Mechanics UB RAS
  • Viktor Vladimirovich Rusakov Institute of Continuous Media Mechanics UB RAS
  • Gennadiy Vladimirovich Stepanov State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds
  • Larisa Sergeevna Polygalova Perm National Research Polytechnic University
  • Elena Yurievna Kramarenko Lomonosov Moscow State University

DOI:

https://doi.org/10.7242/1999-6691/2014.7.4.40

Keywords:

magnetoactive elastomers, magnetorheological polymers, magnetic field induced plasticity, elasto-plasticity, rheological behavior, magnetic shape memory

Abstract

The effect of field-induced plasticity (magnetic shape memory) displayed by polymer composites filled with multi-domain ferromagnetic microparticles is discussed. Such a soft magnetic elastomer (SME) magnetizes, that is, the filler particles acquire magnetic moments only upon application of an external magnetic field. ‘Switching-on’ of interparticle magnetic interactions essentially affects the internal structure of SMEs since the magnetic forces by far exceed the high-elasticity ones due to attachment of the particles to the polymer matrix. According to the hypothesis, in a SME there self-organizes a network of clusters that gives birth to the effect of internal dry friction and by that imparts plasticity to the composite. Field-induced structuring, together with plasticity, disappears as soon as the external field is turned off. Under these conditions, elastic forces no longer experience any resistance and move the particles back to their initial spatial positions: the sample ‘recalls’ its initial shape. To account for the above-described plasto-elastic behavior of a magnetized SME, a structure-mechanical model (scheme) is proposed, which comprises the elastic elements (springs) and the entities (Saint-Venant elements) mimicking the dry-friction effect. The elements of the model are heuristically identified with two networks. One of them is related to the polymer matrix as itself, while another resembles the particle clusters formed due to the field-induced magnetic interactions. Both networks are interwoven and may deform only affinely. On the basis of the model, the tensile deformation cycles obtained in experiments on the two types of SMEs made of weakly-linked silicone rubber filled with carbonyl iron microparticles are interpreted. The tested SMEs differ by the dispersity of the filler. The samples of the first type contain only ‘fine’ iron particles with the size of 2-5 microns, while in the SME of the second type the filler consists of equal (by weight) amounts of ‘fine’ and ‘coarse’ (~70 microns) particles. The cycles measured under a number of external fields are presented. By fitting experimental data, the parameters of the theoretical scheme are evaluated, and their dependence on the applied field strength is determined. For the field dependencies of the scheme parameters of the isotropic SMEs examined here, the expressions borrowed from the phenomenology of textured SMEs are taken and tested, proving their applicability for this case.

Downloads

Download data is not yet available.

References

Zrinyi M., Barsi L., Buki A. Deformation of ferrogels induced by nonuniform magnetic fields // J. Chem. Phys. - 1996. - Vol. 104, no. 21. - P. 8750-8756. DOI
2. Zrinyi M., Barsi L., Buki A. Ferrogel: a new magneto-controlled elastic medium // Polym. Gels Netw. - 1997. - Vol. 5, no. 5. - P. 415-427. DOI
3. Nikitin L.V., Mironova L.S., Stepanov G.V., Samus’ A.N. Vlianie magnitnogo pola na uprugie i vazkie svojstva magnitoelastikov // Vysokomolekularnye soedinenia. - 2001. - T. 43, No 4. - S. 698-706.
4. Ginder J.M., Clark S.M., Schlotter W.F., Nichols M.E. Magnetostrictive phenomena in magnetorheological elastomers // Int. J. Mod. Phys. B. - 2002. - Vol. 16, no. 17-18. - P. 2412-2418. DOI
5. Bellan C., Bossis G. Field dependence of viscoelastic properties of MR elastomers // Int. J. Mod. Phys. B. - 2002. - Vol. 16, No. 17-18. - P. 2447-2453. DOI
6. Nikitin L.V., Mironova L.S., Kornev K.G., Stepanov G.V. Uprugie, magnitnye, strukturnye i magnitodeformacionnye svojstva magnitoelastikov // Vysokomolekularnye soedinenia. - 2004. - T. 46, No 3. - S. 498-909.
7. Zhou G.Y., Li J.R. Dynamic behavior of a magnetorheological elastomer under uniaxial deformation: I. Experiment // Smart Mater. Struct. - 2003. - Vol. 12, no. 6. - P. 859-872. DOI
8. Shen Y., Golnaraghi M.F., Heppler G.R. Experimental research and modeling of magnetorheological elastomers // J. Intel. Mat. Syst. Str. - 2004. - Vol. 15, no. 1. - P. 27-35. DOI
9. Farshad M., Benine A. Magnetoactive elastomer composites // Polym. Testing. - 2004. - Vol. 23, no. 3. - P. 347-353. DOI
10. Farshad M., Le Roux M. Compression properties of magnetostrictive polymer composite gels // Polym. Testing. - 2005. - Vol. 24, no. 2. - P. 163-168. DOI
11. Jha R.K., Jha P.K., Guha S.K. Smart RISUG: A potential new contraceptive and its magnetic field-mediated sperm interaction // Int. J. Nanomed. - 2009. - Vol. 4. - P. 55-64. DOI
12. Mayer M., Rabindranath R., Borner J., Horner E., Bentz A., Salgado J., Han H., Bose H., Probst J., Shamonin M., Monkman G.J., Schlunck G. Ultra-soft PDMS-based magnetoactive elastomers as dynamic cell culture substrata // PLOS ONE (Public Library of Science). - 2011. - Vol. 8, no. 10. - e76196. DOI
13. Abramchuk S., Kramarenko E., Stepanov G., Nikitin L.V., Filipcsei G., Khokhlov A.R., Zrinyi M. Novel highly elastic magnetic materials for dampers and seals: Part I. Preparation and characterization of the elastic materials // Polym. Advan. Technol. - 2007. - Vol. 18, no. 11. - P. 883-890. DOI
14. Abramchuk S., Kramarenko E., Grishin D., Stepanov G., Nikitin L. V., Filipcsei G., Khokhlov A.R., Zrinyi M. Novel highly elastic magnetic materials for dampers and seals: part II. Material behavior in a magnetic field // Polym. Advan. Technol. - 2007. - Vol. 18, no. 7. - P. 513-518. DOI
15. Nikitin L.V., Stepanov G.V., Mironova L.S., Gorbunov A.I. Magnetodeformational effect and effect of shape memory in magnetoelastics // J. Magn. Magn. Mater. - 2004. - Vol. 272-276, Part 3. - P. 2072-2073. DOI
16. Melenev P.V., Raikher Yu.L., Rusakov V.V., Stepanov G.V. Field-induced plasticity of soft magnetic elastomers // J. Phys.: Conf. Ser. - 2009. - Vol. 149, no. 1. - 012094. DOI
17. Biller A.M., Stolbov O.V., Rajher U.L. Silovoe vzaimodejstvie namagnicivausihsa castic, pomesennyh v elastomer // Vycisl. meh. splos. sred. - 2014. - T. 7, No 1. - S. 61-72. DOI
18. Biller A.M., Stolbov O.V., Raikher Yu.L. Modeling of particle interactions in magnetorheological elastomers // J. Appl. Phys. - 2014. - Vol. 116, no. 11. - 114904. DOI
19. Zhu X., Jing X., Cheng L. Magnetorheological fluid dampers: A review on structure design and analysis // J. Intel. Mat. Syst. Str. - 2012. - Vol. 23, no. 8. - P. 839-874. DOI
20. Stepanov G.V., Borin D.Yu., Raikher Yu.L., Melenev P.V., Perov N.S. Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers // J. Phys.: Condens. Matter. - 2008. - Vol. 20, no. 20. - 204121. DOI
21. Xu Y., Gong X., Xuan S., Li X., Quin L., Jiang W. Creep and recovery behaviors of magnetorheological plastomer and its magnetic-dependent properties // Soft Matter. - 2012. - Vol. 8, no. 32. - P. 8483-8492. DOI

Published

2014-12-30

Issue

Section

Articles

How to Cite

Melenev, P. V., Kovrov, V. N., Raikher, Y. L., Rusakov, V. V., Stepanov, G. V., Polygalova, L. S., & Kramarenko, E. Y. (2014). Structure-mechanical model for plasto-elastic behavior of soft magnetic elastomers. Computational Continuum Mechanics, 7(4), 423-433. https://doi.org/10.7242/1999-6691/2014.7.4.40