Some structurally nonlinear problems of stability of elastic systems under one-side-displacement constraints

Authors

  • Veronika Yurievna Andryukova Department of Mathematics Komi SC UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2014.7.4.39

Keywords:

stability, critical force, rod, ring, toroidal shell, unilateral constraints

Abstract

The problems of stability of elastic systems with unilateral displacement constraints are considered. These problems belong to the contact problems of the theory of elasticity with an unknown region of active interaction of structural elements. Since the mathematical formalization of such problems involves inequalities and non-differentiable functions, they are structurally nonlinear. If the load exceeds a critical value, the elastic system can go to the adjoining state of equilibrium. As a rule, small disturbances lead to large changes in the system state, including the loss of bearing capacity. Unlike the classical case, we need to find and explore the bifurcation points of nonsmooth equations or nonlinear programming problems. The problem of stability of a rod, whose deflection is limited on one side by a rigid barrier, with the boundary conditions of free edge is solved analytically. An analytical solution is also obtained for the problem of stability of rings under the action of central forces or external normal pressure and backed by threads that cannot withstand compressive forces. The axisymmetric problem of stability of a toroidal shell filled with elastic filler loaded by external normal pressure under the assumption that the shell may depart from the filler is solved numerically.

Downloads

Download data is not yet available.

References

Novozilov V.V. Osnovy nelinejnoj teorii uprugosti. - M.: Gostehizdat, 1948. - 211 s.
2. Feodos’ev V.I. Izbrannye zadaci i voprosy po soprotivleniu materialov. - M.: Nauka, 1967. - 376 s.
3. Bolotin V.V. Nekonservativnye zadaci teorii uprugoj ustojcivosti. - M.: Fizmatgiz, 1961. - 340 s.
4. Cigler G. Osnovy teorii ustojcivosti konstrukcij. - M.: Mir, 1971. - 192 s.
5. Nikolai E.L. Trudy po mehanike. - M.: Gostehizdat, 1955. - 583 s.
6. Tarasov V.N. Metody optimizacii v issledovanii konstruktivno-nelinejnyh zadac mehaniki uprugih sistem. - Syktyvkar: Komi NC UrO RAN, 2013. - 238 s.
7. Kreps V.L. O kvadraticnyh formah, neotricatel’nyh na ortante // ZVMMF. - 1984. - T. 24, No 4. - S. 497-503.
8. Rapoport L.B. Ustojcivost’ po Lapunovu i znakoopredelennost’ kvadraticnoj formy na konuse // PMM. - 1986. - T. 50, No 4. - S. 674-679. DOI
9. Panagiotopulos P. Neravenstva v mehanike i ih prilozenia. Vypuklye i nevypuklye funkcii energii. - M.: Mir, 1989. - 494 s.
10. Mihajlovskij E.I. Elementy konstruktivno-nelinejnoj mehaniki. - Syktyvkar: Izd-vo Syktyvkarskogo universiteta, 2011. - 212 s.
11. Perel’muter A.V., Slivker V.I. Ustojcivost’ ravnovesia konstrukcij i rodstvennye problemy. - M.: Izd-vo SKAD SOFT, 2010. - T. 2. - 672 s.
12. Bazenov V.A., Goculak E.A., Kondakov G.S., Oglobla A.I. Ustojcivost’ i kolebania deformiruemyh sistem s odnostoronnimi svazami. - Kiev: Visa skola. Golovnoe izd-vo, 1989. - 399 s.
13. Tarasov V.N. Ob ustojcivosti uprugih sistem pri odnostoronnih ograniceniah na peremesenia // Tr. IMM UrO RAN. - 2005. - T. 11, No 1. - S. 177-188.
14. Pogorelov A.V. Geometriceskaa teoria ustojcivosti obolocek. - M.: Nauka, 1966. - 296 s.
15. Pogorelov A.V. Differencial’naa geometria. - M.: Nauka, 1974. 176 s.
16. Zav’alov U.S., Kvasov B.I., Mirosnicenko V.L. Metody splajn-funkcij. - M.: Nauka, 1980. - 352 s.
17. Vol’mir A.S. Ustojcivost’ deformiruemyh sistem. - M.: Nauka, 1967. - 984 s.

Published

2014-12-30

Issue

Section

Articles

How to Cite

Andryukova, V. Y. (2014). Some structurally nonlinear problems of stability of elastic systems under one-side-displacement constraints. Computational Continuum Mechanics, 7(4), 412-422. https://doi.org/10.7242/1999-6691/2014.7.4.39