Determination of mechanical properties of materials in terms of models of interaction between AFM probe and sample surfac

Authors

  • Ilya Aleksandrovich Morozov Institute of Continuous Media Mechanics UB RAS
  • Nadezhda Ivanovna Uzhegova Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2014.7.4.37

Keywords:

atomic force microscopy, Herz model, Deryagin-Muller-Toporov model, Johnson-Kendall-Roberts model, numerical methods

Abstract

The atomic force microscope (AFM) is widely used in characterizing the relief of the examined material and its nanoscale mechanical properties, which can differ strongly from its macroscale characteristics. The AFM uses a probe mounted on a spring cantilever beam (cantilever) to scan a sample surface. Scanning is done by approaching and retracting the probe at different points of the material surface. Force -versus-distance curves typically show the cantilever deflection with respect to the vertical displacement of its rigidly fastened probe. The analysis of the AFM force-distance curve makes it possible to determine the mechanical properties of materials. However, in order to get reliable information, the appropriate contact interaction models need to be used. With these models, one can evaluate forces that affect the motion of an AFM probe and correctly interpret the experimental data. This paper presents a review of the literature relevant to key models describing the interaction of the AFM probe with the sample surface and aimed at determining such local mechanical properties of materials as elastic modulus, surface energy and dissipative characteristics. The mechanical effect of the probe on the sample is modeled using two approaches: 1) modeling a microscope probe as a mass-spring system, 2) continuum representation of a microscope probe by a beam with distributed mass. Static contact and dynamic interactions between the probe and the sample surface (Herz, Deryagin-Muller-Toporov, Johnson-Kendall-Roberts models) are examined. Application of numerical methods such as the finite element method and the methods of molecular dynamics is considered for modeling contact interaction problems. Distinguishing features of the examined models and the range of their applicability are discussed.

Downloads

Download data is not yet available.

References

Binnig G., Quate C.F., Gerber Ch. Atomic Force Microscope // Phys. Rew. Lett. - 1986. - Vol. 56, no. 9. - P. 930-933. DOI
2. http://www.nasa.gov/mission_pages/phoenix/images/press/AFM.html (data obrasenia: 07.08.2014)
3. Baselt D.R., Baldeschwieler J.D. Imaging spectroscopy with the atomic force microscope // J. Appl. Phys. - 1994. - Vol. 76, no. 1. - P. 33-38. DOI
4. Meyer E.E., Rosenberg K.J., Israelachvili J. Recent progress in understanding hydrophobic interactions // PNAS. - 2006. - Vol. 103, no. 43. - P. 15739-15746. DOI
5. Rekhviashvili S.Sh., Rozenberg B.A., Dremov V.V. Influence of the size-dependent surface tension of a liquid film on a capillary force in an atomic force microscope // JETP Lett. - 2008. - Vol. 88, no. 11. - P. 772-776. DOI
6. Muller M., Schimmel T., Haussler P., Fettig H., Muller O., Albers A. Finite element analysis of V-shaped cantilevers for atomic force microscopy under normal and lateral force loads // Surf. Interface Anal. - 2006. - Vol. 38, no. 6. - P. 1090-1095. DOI
7. Rasekh M., Khadem S.E. Pull-in analysis of an electrostatically actuated nano-cantilever beam with nonlinearity in curvature and inertia // Int. J. Mech. Sci. - 2011. - Vol. 53, no. 2. - P. 108-115. DOI
8. Song Y., Bhushan B. Simulation of dynamic modes of atomic force microscopy using a 3D finite element model // Ultramicroscopy. - 2006. - Vol. 106, no. 8-9. - P. 847-873. DOI
9. Butt H.-J., Jaschke M. Calculation of thermal noise in atomic force microscopy // Nanotechnology. - 1995. - Vol. 6, no. 1. - P. 1-7. DOI
10. Lee S.I., Howell S.W., Raman A., Reifenberger R. Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment // Phys. Rev. B. - 2002. - Vol. 66. - 115409. DOI
11. Rabe U., Turner J., Arnold W. Analysis of the high-frequency response of atomic force microscope cantilevers // Appl. Phys. A. - 1998. - Vol. 66, no. 1. - P. S277-S282. DOI
12. Stark R.W., Schitter G., Stark M., Guckenberger R., Stemmer A. State-space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy // Phys. Rev. B. - 2004. - Vol. 69. - 085412. DOI
13. Johnson K.L. Contact mechanics. - Cambridge: Cambridge University Press, 1985. - 452 p.
14. Tsukruk V.V., Huang Z., Chizhik S.A., Gorbunov V.V. Probing of micromechanical properties of compliant polymeric materials // J. Mater. Sci. - 1998. - Vol. 33, no. 20. - P. 4905-4909. DOI
15. Sneddon I.N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile // Int. J. Eng. Sci. - 1965. - Vol. 3, no. 1. - P. 47-57. DOI
16. Bradley R.S. The cohesive force between solid surfaces and the surface energy of solids // Philos. Mag. - 1932. - Vol. 13, no. 86. - P. 853-862. DOI
17. Derjaguin B. Untersuchungen uber die Reibung und Adhasion, IV // Kolloid Z. - 1934. - Vol. 69, no. 2. - P. 155-164. DOI
18. Roberts A.D. / PhD Dissertation. - Cambridge University, England, 1968.
19. Kendall K. The stiffness of surfaces in statistic and sliding contact / PhD Dissertation. - Cambridge University, England, 1969.
20. Drutowski R.C. Hertzian contact and adhesion of elastomers // J. Tribol. - 1969. - Vol. 91, no. 4. - P. 732-737. DOI
21. Johnson K.L. A note on the adhesion of elastic solids // Brit. J. Appl. Phys. - 1958. - Vol. 9, no. 5. - P. 199-200. DOI
22. Derjaguin B.V., Muller V.M., Toporov Yu.P. Effect of contact deformations on the adhesion of particles // J. Colloid Interf. Sci. - 1975. - Vol. 53, no. 2. - P. 314-326. DOI
23. Burnham N.A., Kulik A.J. Surface forces and adhesion // Handbook of Micro/Nanotribology. - 1997. - P. 1-31
24. Medendorp C.A. Atomic force microscopy method development for surface energy analysis / Doctoral dissertation. - University of Kentucky, USA, 2011. - 185 p.
25. Johnson K.L., Kendall K., Roberts A.D. Surface energy and contact of elastic solids // P. R. Soc. London. - 1971. - Vol. 324, no. 1558. - P. 301-313. DOI
26. Sun Yu., Akhremitchev B., Walker G.C. Using the adhesive interaction between Atomic force microscopy tips and polymer surfaces to measure the elastic modulus of compliant samples // Langmuir. - 2004. - Vol. 20, no. 14. - P. 5837-5845. DOI
27. Tabor D. Surface forces and surface interactions // J. Colloid Interf. Sci. - 1977. - Vol. 58, no.1. - P. 2-13. DOI
28. Yu N., Polycarpou A.A. Adhesive contact based on the Lennard-Jones potential: a correction to the value of the equilibrium distance as used in the potential // J. Colloid Interf. Sci. - 2004. - Vol. 278, no. 2. - P. 428-435. DOI
29. Sergici A.O., Adams G.G., Muftu S. Adhesion in the contact of a spherical indenter with a layered elastic half-space // J. Mech. Phys. Solids. - 2006. - Vol. 54, no. 9. - P. 1843-1861. DOI
30. Nishi T., Nagai S., Fujinami S., Nakajima K. Recent progress of nano-mechanical mapping // Chinese J. Polym. Sci. - 2009. - Vol. 27, no. 1. - P. 37-47. DOI
31. Maugis D. Adhesion of spheres: The JKR-DMT transition using a Dugdale model // J. Colloid Interf. Sci. - 1992. - Vol. 150, no. 1. - P. 243-269. DOI
32. Dugdale D.S. Yielding of steel sheets containing slits // J. Mech. Phys. Solids. - 1960. - Vol. 8, no. 2. - P. 100-104. DOI
33. Lantz M.A., O’Shea S.J., Welland M.E., Johnson K.L. Atomic-force-microscope study of contact area and friction on NbSe2 // Phys. rev. B. - 1997. - Vol. 55, no. 16. - P. 10776-10785. DOI
34. Carpick R.W., Ogletree D.F., Salmeron M. A general equation for fitting contact area and friction vs load measurements // J. Colloid Interf. Sci. - 1999. - Vol. 211, no. 2. - P. 395-400. DOI
35. Magonov S.N., Elings V., Whangbo M.-H. Phase imaging and stiffness in tapping-mode atomic force microscopy // Surf. Sci. - 1997. - Vol. 375, no. 2-3. - P. L385-L391. DOI
36. Cleveland J.P., Anczykowski B., Schmid A.E., Elings V.B. Energy dissipation in tapping-mode atomic force microscopy // Appl. Phys. Lett. - 1998. - Vol. 72, no. 20. - P. 2613-2615. DOI
37. Wang D., Liang X.-B., Liu Y.-H., Fujinami S., Nishi T., Nakajima K. Characterization of surface viscoelasticity and energy dissipation in a polymer film by atomic force microscopy // Macromolecules. - 2011. - Vol. 44, no. 21. - P. 8693-8697. DOI
38. Santos S., Gadelrab K.R., Silvernail A., Armstrong P., Stefancich M., Chiesa M. Energy dissipation distributions and dissipative atomic processes in amplitude modulation atomic force microscopy // Nanotechnology. - 2012. - Vol. 23, no. 12. - P. 125401-125413. DOI
39. Igarashi T., Fujinami S., Nishi T., Asao N., Nakajima K. Nanorheological mapping of rubbers by atomic force microscopy // Macromolecules. - 2013. - Vol. 46, no. 5. - P. 1916-1922. DOI
40. Rodrigues T.R., Garcia R. Tip motion in amplitude modulation "tapping-mode" atomic-force microscopy: Comparison between continuous and point-mass models // Appl. Phys. Lett. - 2002. - Vol. 80, no. 9. - P. 1646-1648. DOI
41. Biderman V.L. Teoria mehaniceskih kolebanij: Ucebnik dla vuzov. - M: Vyssaa skola, 1980. - 408 c.
42. Rabe U., Janser K., Arnold W. Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment // Rev. Sci. Instrum. - 1996. - Vol. 67, no. 9. - P. 3281-3293. DOI
43. Stark R.W., Heckl W.M. Fourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation // Surf. Sci. - 2000. - Vol. 457, no. 1-2. - P. 219-228. DOI
44. Song Y., Bhushan B. Atomic force microscopy dynamic modes: modeling and applications // J. Phys.: Condens. Matter. - 2008. - Vol. 20, no. 22. - P. 225012-29. DOI
45. Turner J.A., Hirsekorn S., Rabe U., Arnold W. High-frequency response of atomic-force microscope cantilevers // J. Appl. Phys. - 1997. - Vol. 82, no. 3. - P. 966-979. DOI
46. Wright O.B., Nishiguchi N. Vibration dynamics of force microscopy: Effect of tip dimensions // Appl. Phys. Lett. - 1997. - Vol. 71. - P. 626-628. DOI
47. Dupas E., Gremaud G., Kulik A., Loubet J.-L. High-frequency mechanical spectroscopy with an atomic force microscope // Rev. Sci. Instrum. - 2001. - Vol. 72, no. 10. - 3891-3897. DOI
48. Turner J.A. Non-linear vibrations of a beam with cantilever-Hertzian contact boundary conditions // J. Sound Vib. - 2004. - Vol. 275, no. 1-2. - P. 177-191. DOI
49. Choi J.L., Gethin D.T. Simulation of atomic force microscopy operation via three-dimensional finite element modeling // Nanotechnology. - 2009. - Vol. 20, no. 6. - P. 065702-14. DOI
50. Arinero R., Leveque G. Vibration of the cantilever in Force Modulation Microscopy analysis by a finite element model // Rev. Sci. Instrum. - 2003. - Vol. 74, no. 1. - P. 104-111. DOI
51. Garisin O.K. Modelirovanie vzaimodejstvia zonda atomno-silovogo mikroskopa s polimernoj poverhnost’u s ucetom sil Van-der-Vaal’sa i poverhnostnogo natazenia // Nanosistemy: fizika, himia, matematika. - 2012. - Tom 3, No 2. - S. 47-54.
52. Garisin O.K., Lebedev S.N. Teoreticeskoe modelirovanie raboty atomno-silovogo mikroskopa pri issledovanii poverhnostej so sloznoj nanostrukturoj // Vestnik PNIPU: Mehanika. - 2013. - No 1. - C. 68-80.
53. Morozov I.A., Garisin O.K., Volodin F.V., Kondurin A.V., Lebedev S.N. Eksperimental’noe i cislennoe modelirovanie elastomernyh kompozitov putem issledovania nanosloev poliizoprena na uglerodnoj poverhnosti // Mehanika kompozicionnyh materialov i konstrukcij. - 2008. - T. 14, No 1. - S. 3-15.
54. Qu M., Deng F., Kalkhoran S.M., Gouldstone A., Robisson A., Van Vliet K.J. Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber-carbon black nanocomposites // Soft Matter. - 2011. - Vol. 7, no. 3. - P. 1066-1077. DOI
55. Garisin O.K. Modelirovanie kontaktnogo rezima raboty atomno-silovogo mikroskopa s ucetom nemehaniceskih sil vzaimodejstvia s poverhnost’u obrazca // Vycisl. meh. splos. sred. - 2012. - T. 5, No 1. - S. 61-69. DOI
56. Dong Y., Li Q., Martini A. Molecular dynamics simulation of atomic friction: A review and guide // J. Vac. Sci. Technol. A. - 2013. - Vol. 31. - P. 030801. DOI
57. Galan U., Sodano H.A. Molecular dynamics prediction of interfacial strength and validation through atomic force microscopy // Appl. Phys. Lett. - 2012. - Vol. 101. - P. 151603. DOI
58. Onofrio N., Venturini G.N., Strachan A. Molecular dynamic simulation of tip-polymer interaction in tapping-mode atomic force microscopy // J. Appl. Phys. - 2013. - Vol. 114. - P. 094309. DOI
59. Burnham N.A., Colton R.J. Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope // J. Vac. Sci. Technol. A. - 1989. - Vol. 7, no. 4. - P. 2906-2913. DOI

Published

2014-12-30

Issue

Section

Articles

How to Cite

Morozov, I. A., & Uzhegova, N. I. (2014). Determination of mechanical properties of materials in terms of models of interaction between AFM probe and sample surfac. Computational Continuum Mechanics, 7(4), 385-397. https://doi.org/10.7242/1999-6691/2014.7.4.37