Numerical and analytical investigation of free vibrations of circular cylindrical shells with added mass linearly distributed along generatrix
DOI:
https://doi.org/10.7242/1999-6691/2014.7.4.36Keywords:
circular cylindrical shell, mass linearly distributed along generatrix, stringer, splitting of bending frequency spectrum, wave parameterAbstract
The influence of an added mass linearly distributed along generatrix on the frequency and modes of free vibrations of a thin shell is studied in the framework of the shallow shell theory. We introduce a refined version of the mathematical model which assumes that the excitation of bending vibrations gives rise not only to a conjugate bending mode, but to the radial vibrations of the shell as well. The mechanism of interaction between the bending and radial vibrations is the light added mass. The boundary value problem is solved using the Bubnov-Galerkin method. The resulting system of dynamical equations shows that the added mass effect leads to the coupling of the low-frequency bending vibrations of the shell and its high-frequency radial vibrations. Radial vibrations act as an additional inertial coupling between the conjugate bending modes. It is shown that the splitting of the bending frequency spectrum becomes stronger, which is caused not only by the added mass, but also by the wave parameters characterizing the relative length and thickness of the shell. The analysis yielded the ranges of relative length and thickness of the shell in which the interaction between the bending and radial vibrations could be neglected. The theoretical results are compared with the numerical solution obtained using the finite element software code NASTRAN.
Downloads
References
Evensen D.A., Fulton R.E. Some studies on the nonlinear dynamic response of shell-type structures // Dynamic Stability of Structures. - New York: Pergamon Press, 1967. - P. 237-254.
2. Dowell E.H., Ventres C.S. Modal equations for the nonlinear flexural vibrations of a cylindrical shell // Int. J. Solids Struct. - 1968. - Vol. 4, no. 10. - P. 975-991. DOI
3. Varadan T.K., Prathap Dz., Ramani H.V. Nelinejnye svobodnye izgibnye kolebania tonkostennyh krugovyh cilindriceskih obolocek // Aerokosmiceskaa tehnika. - 1990. - No 5. - S. 21-24.
4. Amabili M. Nonlinear vibrations and stability of shells and plates. - New York, USA: Cambridge university press, 2008.
5. Kubenko V.D., Koval’cuk P.S., Krasnopol’skaa T.S. Nelinejnoe vzaimodejstvie form izgibnyh kolebanij cilindriceskih obolocek. - Kiev: Naukova dumka, 1984. - 220 s.
6. Andreev L.V., Dysko A.L., Pavlenko I.D. Dinamika plastin i obolocek s sosredotocennymi massami. - M.: Masinostroenie, 1988. - 195 s.
7. Sivak V.F., Sivak V.V. Experimental investigation into the vibrations of shells of revolution with added masses // Int. Appl. Mech. - 2002. - Vol. 38, no. 5. - R. 623-627. DOI
8. Seregin S.V. Issledovanie dinamiceskih harakteristik obolocek s otverstiami i prisoedinennoj massoj // Vestnik MGSU. - 2014. - No 4. - S. 52-58.
9. Seregin S.V. Vlianie prisoedinennogo tela na castoty i formy svobodnyh kolebanij cilindriceskih obolocek // Stroitel’naa mehanika i rascet sooruzenij. - 2014. - No 3. - S. 35-38.
10. Seregin S.V. Vlianie plosadi kontakta i veliciny linejno raspredelennoj i sosredotocennoj massy s krugovoj cilindriceskoj obolockoj na castoty i formy svobodnyh kolebanij // Vestnik MGSU. - 2014. - No 7. - S. 64-74.
11. Vol’mir A.S. Nelinejnaa dinamika plastinok i obolocek. - M.: Nauka, 1972. - 432 s.
12. Svobodnye kolebania krugovoj cilindriceskoj obolocki, nesusej linejno raspredelennuu massu vdol’ obrazuusej: Svidetel’stvo o registracii programmy dla EVM / Seregin S.V. - Rossijskaa Federacia, No 2014617017, 2014.
13. Sobstvennye kolebania kol’ca s prisoedinennoj massoj: Svidetel’stvo o registracii programmy dla EVM / Seregin S.V. - Rossijskaa Federacia, No 2014611938, 2013.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.