Numerical simulation of viscous 2D lid-driven cavity flow at high Reynolds numbers
DOI:
https://doi.org/10.7242/1999-6691/2014.7.4.35Keywords:
Navier-Stokes equations, a lid-driven cavity flow, steady-state solution, high Reynolds numbersAbstract
This paper addresses the question of existence of a steady-state solution to the problem of incompressible viscous fluid flow in a two-dimensional square cavity with a moving upper lid at high Reynolds numbers (Re>10000). Based on the literature survey and numerical results obtained when solving the problem at 10000≤Re≤20000, we have formulated the conditions for constructing the solution and discussed its distinguishing features. The calculated vortex parameters up to the fourth level are in good agreement with the results of other authors for Re=10000 and Re=20000, and this supports the validity of our results. For the same Reynolds numbers, the detailed structure of the flow is presented. The evolution of the fourth level bottom-corner vortices at 15000≤Re≤20000 is demonstrated. It is shown that at Re>10000 the fluid flow in the third and fourth level vortices has a clear Stokes mode. For these reasons, a comparison of the parameters of such vortices with the Moffatt analytical solution of fluid flow near sharp corners is performed. It has been found that the numerical and analytical results agree fairly well. Substantiation of the accuracy of the high-Re steady-state solution is carried out in the context of its saturation at an n-fold increase in the number of nodes along each spatial coordinate, false viscosity effect and solution convergence analysis of the behavior of dynamic systems.
Downloads
References
Erturk E. Discussions on driven cavity flow // Int. J. Numer. Meth. Fl. - 2009. - Vol. 60, no. 3. - P. 275-294. DOI
2. Simuni L.M. Cislennoe resenie zadaci dvizenia zidkosti v pramougol’noj ame // PMTF. - 1965. - No 6. - S. 106-108.
3. Burggraf O.R. Analytical and numerical studies of the structure of steady separated flows // J. Fluid Mech. - 1966. - Vol. 24, no. 1. - P. 113-151. DOI
4. Ghia U., Ghia K.N., Shin C.T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method // J. Comput. Phys. - 1982. - Vol. 48, no. 3. - P. 387-411. DOI
5. Benjamin A.S., Denny V.E. On the convergence of numerical solutions for 2-D flows in a cavity at large Re // J. Comput. Phys. - 1979. - Vol. 33, no. 3. - P. 340-358. DOI
6. Barragy E., Carey G.F. Stream function-vorticity driven cavity solution using p finite elements // Comput. Fluids. - 1997. - Vol. 26, no. 5. - P. 453-468. DOI
7. Schreiber R., Keller H.B. Driven cavity flows by efficient numerical techniques // J. Comput. Phys. - 1983. - Vol. 49, no. 2. - P. 310-333. DOI
8. Rogers S.E., Kwak D. An upwind differencing scheme for the incompressible Navier-Stokes equations // Appl. Numer. Math. - 1991. - Vol. 8, no. 1. - P. 43-64. DOI
9. Liao S.-J., Zhu J.-M. A short note on high-order streamfunction-vorticity formulations of 2D steady state Navier-Stokes equations // Int. J. Numer. Meth. Fl. - 1996. - Vol. 22, no. 1. - P. 1-9. DOI
10. Bruneau C.-H., Jouron C. An efficient scheme for solving steady incompressible Navier-Stokes equations // J. Comput. Phys. - 1990. - Vol. 89, no. 2. - P. 389-413. DOI
11. Garanza V.A., Kon’sin V.N. Cislennye algoritmy dla tecenij vazkoj zidkosti, osnovannye na konservativnyh kompaktnyh shemah vysokogo poradka approksimacii // ZVMMF. - 1999. - T. 39, No 8. - C. 1378-1392.
12. Shankar P.N., Deshpande M.D. Fluid mechanics in the driven cavity // Annu. Rev. Fluid Mech. - 2000. - Vol. 32. - P. 93-136. DOI
13. Kupferman R. A central-difference scheme for a pure stream function formulation of incompressible viscous flow // SIAM J. Sci. Comput. - 2001. - Vol. 23, no. 1. - P. 1-18. DOI
14. Marinova R.S., Christov C.I., Marinov T.T. A fully coupled solver for incompressible Navier-Stokes equations using operator splitting // Int. J. Comput. Fluid D. - 2003. - Vol. 17, no. 5. - P. 371-385. DOI
15. Bruneau C.-H., Saad M. The 2D lid-driven cavity problem revisited // Comput. Fluids. - 2006. - Vol. 35, no. 3. - P. 326-348. DOI
16. Kumar D.S., Kumar K.S., Kumar M.D. A fine grid solution for a lid-driven cavity flow using multigrid method // Engineering Applications of Computational Fluid Mechanics. - 2009. - Vol. 3, no. 3. - P. 336-354.
17. Shapeev A.V., Lin P. An asymptotic fitting finite element method with exponential mesh refinement for accurate computation of corner eddies in viscous flows // SIAM J. Sci. Comput. - 2009. - Vol. 31, no. 3. - P. 1874-1900. DOI
18. Volkov P.K., Pereverzev A.V. Metod konecnyh elementov dla resenia kraevyh zadac regularizovannyh uravnenij neszimaemoj zidkosti v peremennyh <> // Matem. modelirovanie. - 2003. - T. 15, No 3. - S. 15-28.
19. Erturk E., Corke T.C., Gokcol C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers // Int. J. Numer. Meth. Fl. - 2005. - Vol. 48, no. 7. - P. 747-774. DOI
20. Erturk E., Gokcol C. Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers // Int. J. Numer. Meth. Fl. - 2006. - Vol. 50, no. 4. - P. 421-436. DOI
21. Cardoso N., Bicudo P. Time dependent simulation of the driven lid cavity at high Reynolds number // arXiv: D0809.3098v2[physics.flu-dyn]. - 20 November 2009. - P. 1-20. (URL: http://arxiv.org/pdf/0809.3098.pdf).
22. Hachem E., Rivaux B., Kloczko T., Digonnet H., Coupez T. Stabilized finite element method for incompressible flows with high Reynolds number // J. Comput. Phys. - 2010. - Vol. 229, no. 23. - P. 8643-8665. DOI
23. Wahba E.M. Steady flow simulations inside a driven cavity up to Reynolds number 35000 // Comput. Fluids. - 2012. - Vol. 66. - P. 85-97. DOI
24. Moffatt H.K. Viscous and resistive eddies near a sharp corner // J. Fluid Mech. - 1964. - Vol. 18, no. 1. - P. 1-18. DOI
25. Belocerkovskij O.M., Gusin V.A., Sennikov V.V. Metod rasseplenia v primenenii k reseniu zadac dinamiki vazkoj neszimaemoj zidkosti // ZVMMF.- 1975. - T. 15, No 1. - C. 197-207. DOI
26. Patankar S. Cislennye metody resenia zadac teploobmena i dinamiki zidkosti. - M.: Energoatomizdat, 1984. - 152 c.
27. Fomin A.A., Fomina L.N. Uskorenie polinejnogo rekurrentnogo metoda v podprostranstvah Krylova // Vestn. Tom. gos. un-ta. Matematika i mehanika. - 2011. - No 2. - C. 45-54.
28. Fomin A.A., Fomina L.N. Cislennoe resenie uravnenij Nav’e-Stoksa pri modelirovanii dvumernyh tecenij vazkoj neszimaemoj zidkosti // Vestn. Tom. gos. un-ta. Matematika i mehanika. - 2014. - No 3. - C. 94-108.
29. Belov I.A., Isaev S.A. Cirkulacionnoe dvizenie zidkosti v pramougol’noj kaverne pri srednih i bol’sih cislah Rejnol’dsa // PMTF. - 1982. - No 1. - S. 41-45.
30. Kopcenov V.I, Krajko A.N., Levin M.P. K ispol’zovaniu susestvenno neravnomernyh setok pri cislennom resenii uravnenij Nav’e-Stoksa // ZVMMF. - 1982. - T. 22, No 6. - S. 1457-1467. DOI
31. Kastanova S.V., Okulova N.N. Matematiceskoe modelirovanie tecenia vazkoj teploprovodnoj zidkosti s ispol’zovaniem metoda LS-STAG // Vestnik MGTU im. N.E. Baumana. Seria: Estestvennye nauki. - 2012. - No S2. - C. 86-97.
32. Degi D.V., Starcenko A.V. Cislennoe resenie uravnenij Nav’e-Stoksa na komp’uterah s parallel’noj arhitekturoj // Vestn. Tom. gos. un-ta. Matematika i mehanika. - 2012. - No 2. - S. 88-98.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.