Designing of specimen shape for biaxial stretching experiments

Authors

  • Ksenia Aleksandrovna Mokhireva Institute of Continuous Media Mechanics UB RAS
  • Aleksandr Lvovich Svistkov Institute of Continuous Media Mechanics UB RAS
  • Vladimir Vasilievich Shadrin Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2014.7.4.34

Keywords:

cruciform specimen, biaxial stress-strain state, hyperelastic models, viscoelastic material, large deformations

Abstract

In-plane biaxial stretching of cruciform specimens made of elastomeric materials is considered. This type of experiments provides additional information about the properties of materials with complex mechanical behavior. However, due to large deformations and a high degree of distortion peculiar to elastomers, an inhomogeneous strain field and, consequently, a nonuniform stress field are generated across the central part (working area) of the specimen. To achieve uniform loading of the central part of the specimen, some changes of the initial specimen geometry (number and size of arm strips transferring loads to the central part of the specimen and others) should be done. A numerical analysis of the effect of a cruciform specimen shape on the uniformity of the stress-strain fields in the working area of the specimen has been performed using the ABAQUS Finite Element Analysis (FEA) software. The problem of nonlinear elasticity is solved numerically, and the behavior of elastomeric material is described by the neo-Hookean, Mooney-Rivlin and Arruda-Boyce strain energy potentials. Based on the comparison of the obtained results, we have chosen an optimal shape of the cruciform specimen for biaxial testing, which allows us to achieve the maximum uniform stress-strain state in the area of interest. In the modified version, the specimen arm strips are transformed into the fan-shaped strips while fixing in the testing machine grips. The efficiency of the proposed specimen shape has been validated by experiments involving a visual inspection of the uniformity of strain field in the specimens made of materials with the softening effect and viscoelastic properties.

Downloads

Download data is not yet available.

References

Mullins L., Tobin N.R. Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler reinforced vulcanized rubber // J. Appl. Polym. Sci. - 1965. - Vol. 9, no. 9. - P. 2993-3009. DOI
2. Harwood J.A.C., Mullins L., Payne A.R. Stress softening in natural rubber vulcanizates. Part II. Stress softening effects in pure gum and filler loaded rubbers // J. Appl. Polym. Sci. - 1965. - Vol. 9, no. 9. - P. 3011-3021. DOI
3. Sadrin V.V. Vosstanovlenie mehaniceskih svojstv rezin v rezul’tate termostatirovania // Vysokomolekularnye soedinenia. - 2005. - T. 47, No 7. - C. 1237-1240.
4. Abdelhay A.M., Dawood O.M., Bassuni A., Elhalawany E.A., Mustafa M.A. A newly developed cruciform specimens geometry for biaxial stress evaluation using NDE // 13th International Conference on Aerospace Sciences & Aviation Technology. ASAT-13, Cairo, Egypt, May 26-28, 2009. - 9 p. (URL: http://www.mtc.edu.eg/asat13/pdf/te12.pdf).
5. Abu-Farha F., Hector Jr. L.G., Khraisheh M. Specimens for elevated temperature biaxial testing of lightweight materials // JOM. - 2009. - Vol. 61, no. 8. - P. 48-56.
6. Escarpita D.A.A., Cardenas D., Elizalde H., Ramirez R., Probst O. Biaxial tensile strength characterization of textile composite materials // Composites and their properties / Ed. N. Hu. - InTech, 2012. - P. 83-105. DOI
7. Galliot S., Luchsinger R.H. Uniaxial and biaxial mechanical properties of ETFE foils // Polym. Test. - 2011. - Vol. 30, no. 4. - P. 356-365. DOI
8. Hollenstein M., Helfenstein J., Mazza E. Investigation on the optimal specimen design for planar-biaxial materials testing of soft materials // Constitutive models for rubber VI / Ed. G. Heinrich, M. Kaliske, A. Lion, S. Reese. - CRS Press, 2010. - P. 371-376. DOI
9. Monch E.M., Galster D. A method for producing a defined uniform biaxial tensile stress field // Br. J. Appl. Phys. - 1963. - Vol. 14, no. 11. - P. 810-812. DOI
10. Pisarenko G.S., Lebedev A.A. Deformirovanie i procnost’ materialov pri sloznom naprazennom sostoanii. - Kiev: Naukova dumka, 1976. - 416 s.
11. Slannikov V.N., Zaharov A.P. Obrazcy dla ispytanij pri dvuhosnom cikliceskom nagruzenii // Trudy Akademenergo. - 2013. - No 3. - S. 70-79.
12. Lazarescu L., Comsa D.-S., Nicodim I., Ciobanu I., Banabic D. Characterization of plastic behaviour of sheet metals by hydraulic bulge test // T. Nonferr. Metal. Soc. - 2012. - Vol. 22, no. 2. - P. 275-279. DOI
13. Kawabata S., Kawai H. Strain energy density functions of rubber vulcanizates from biaxial extension // Adv. Polym. Sci. - 1977. - Vol. 24. - P. 89-124. DOI
14. Dorfmann L., Pancheri F.Q. A constitutive model for the Mullins effect with changes in material symmetry // Int. J. Nonlinear Mech. - 2012. - Vol. 47, no. 8. - P. 874-887. DOI
15. Boyce M.C., Arruda E.M. Constitutive models of rubber elasticity: A review // Rubber Chem. Technol. - 2000. - Vol. 73, no. 3. - P. 504-523. DOI

Published

2014-12-30

Issue

Section

Articles

How to Cite

Mokhireva, K. A., Svistkov, A. L., & Shadrin, V. V. (2014). Designing of specimen shape for biaxial stretching experiments. Computational Continuum Mechanics, 7(4), 353-362. https://doi.org/10.7242/1999-6691/2014.7.4.34