The stress-strain state and duration to fracture of ring plates under creep conditions
DOI:
https://doi.org/10.7242/1999-6691/2015.8.4.30Keywords:
axisymmetric ring plates, bending, creep, damage parameter, long-term strength, time of onset of fractureAbstract
The stress-strain state of axisymmetrically loaded ring plates is investigated at any time before the beginning of fracture using the Rabotnov kinetic creep theory, which describes all three stages of creep. The time of onset of fracture is the time at which at any point of the plate the damage parameter reaches a critical value equal to unity (damage parameter is equal to zero for the undamaged material). The calculation of stress-strain state is carried out in two ways, and then the results are compared. In the first case, the solution of the unsteady-state creep problem taking into account damage accumulation is based on the solution of the steady-state creep problem. For simplicity, the von Mises criterion in constitutive equations is linearized, which is equivalent to using the Tresca-Saint-Venant criterion. In order to obtain a solution to the unsteady-state creep problem, it is necessary to multiply the known solution of the steady-state creep problem by some functions of coordinates and time. These functions can be found from the corresponding system of equations. The second technique is based on a finite element method, and the constitutive equations include the von Mises criterion. In the ANSYS program, a custom UserСreep procedure is activated for modeling damage accumulation. Dependences of the time of onset of fracture on the value of a bending moment applied to the contour of the inner hole of a ring plate are plotted. Diagrams obtained by two methods show that the use of the Tresca-Saint-Venant criterion provides a lower estimate for the time of onset of fracture.
Downloads
References
Rabotnov U.N. Polzucest’ elementov konstrukcij. - M: Nauka, 1966. - 752 s.
2. Nikitenko A.F. Polzucest’ i dlitel’naa procnost’ metalliceskih materialov. - Novosibirsk: Izd-vo NGASU, 1997. -278 s.
3. Kacanov L.M. Teoria polzucesti. - M.: Fizmatgiz, 1960. - 456 s.
4. Zakonomernosti polzucesti i dlitel’noj procnosti: Spravocnik // Pod obs. red. S.A. Sesterikova. - M.: Masinostroenie, 1983. - 101 s.
5. Nikitenko A.F. Niznaa i verhnaa ocenki vremeni nacala razrusenia elementov konstrukcij // PMTF. - 2001. - T. 42, No 1. - S. 164-169. DOI
6. Skrzypek J.J., Ganczarski A. Modeling of material damage and failure of structures. Theory and applications. - Berlin: Springer-Verlag, 1999. - 326 p.
7. Altenbach H., Morachkovsky O., Naumenko K., Sychov A. Geometrically nonlinear bending of thin-walled shells and plates under creep-damage conditions // Arch. Appl. Mech. - 1997. - Vol. 67, no. 5. - P. 339-352. DOI
8. Altenbach H., Altenbach J., Naumenko K. On the prediction of creep damage by bending of thin-walled structures // Mechanics of Time-Dependent Materials. - 1997. - Vol. 1, no. 2. - P. 181-193. DOI
9. Altenbach H. Topical problems and applications of creep theory // Int. Appl. Mech. - 2003. - Vol. 39, no. 6. - P. 631-655. DOI
10. Zolocevskij A.A., Sklepus A.N., Sklepus S.N. Nelinejnaa mehanika deformiruemogo tverdogo tela. - Har’kov: Biznes Investor Grup, 2011.- 720 s.
11. Lokosenko A.M., Sokolov A.V. Polzucest’ i dlitel’noe razrusenie cilindriceskoj obolocki pod vnesnim davleniem v prisutstvii agressivnoj sredy // MTT. - 2014. - No 1. - S. 65-76. DOI
12. Zaev V.A., Nikitenko A.F. Rascet naprazenno-deformirovannogo sostoania izgibaemyh kol’cevyh plastin s ucetom povrezdaemosti materiala v processe polzucesti // PMTF. - 1993. - T. 34, No 3. - S. 142-146. DOI
13. Nikitenko A.F., Lubasevskaa I.V. Kineticeskaa teoria polzucesti i rascet elementov konstrukcij na dlitel’nuu procnost’. Soobsenie 1. Naprazenno-deformirovannoe sostoanie neravnomerno nagretyh tolstostennyh trub // Problemy procnosti. - 2005.- No 5.- S. 30-44. DOI
14. Bansikova I.A., Nikitenko A.F. Polzucest’ osessimetricno nagruzennyh plastin s ucetom nakoplenia povrezdenij v ih materiale // PMTF. - 2006.- T. 47, No 5. - S. 157-168. DOI
15. Bansikova I.A., Nikitenko A.F. Rascet naprazenno-deformirovannogo sostoania i dlitel’nosti do razrusenia elementov konstrukcij pri polzucesti // Dinamika splosnoj sredy. Dokl. Vseros. Konf. <>, Novosibirsk, Institut gidrodinamiki im. M.A. Lavrent’eva, 9-13 oktabra 2006 g. / Pod red. cl.-korr. RAN B.D. Annina, d-ra tehn. nauk M.A. Legana. - Novosibirsk, 2007. - Vyp. 125. - S. 14-19.
16. Rabotnov U.N., Milejko S.T. Kratkovremennaa polzucest’. - M.: Nauka, 1970. - 224 s.
17. Sosnin O.V., Gorev B.V., Nikitenko A.F. Energeticeskij variant teorii polzucesti. - Novosibirsk: Institut gidrodinamiki im. M.A. Lavrent’eva, 1986. - 96 s.
18. Malinin N.N. Issledovanie ustanovivsejsa polzucesti kruglyh i kol’cevyh osesimmetricno nagruzennyh plastin // Rascety na procnost’. - M.: Masgiz, 1963. - Vyp. 9. - S. 173-195.
19. Bojl Dz., Spens Dz. Analiz naprazenij v konstrukciah pri polzucesti. - M.: Mir, 1986. - 360 s.
20. Sosnin O.V., Gorev B.V., Nikitenko A.F. K obosnovaniu energeticeskogo varianta teorii polzucesti. Soobsenie 1. Osnovnye gipotezy i eksperimental’naa proverka // Problemy procnosti. - 1976. - No 11. - S. 3-8.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.