Theoretical principles of a stress-based geometrical immersion method
DOI:
https://doi.org/10.7242/1999-6691/2014.7.3.31Keywords:
boundary value problem of elasticity theory, stress-based formulation, Kastilyano's variational principle, geometrical immersion, method, finite element methodAbstract
The main theoretical principles of a stress-based geometrical immersion method which is applied to solve the boundary value problem of elasticity theory for isotropic homogeneous body with a complex spatial configuration are described. The basic idea of the method is to construct a convergent iterative procedure in order to find a solution for the area of complex spatial configuration as a sequence of problem solutions for some area of a more simple (canonical) form. The variational formulation of the problem is based on the variational principle of minimum additional work (Kastilyano’s principle) and reduced to an abstract mathematical problem - study of one operator equation by the methods of functional analysis. According to the variational equation of the geometrical immersion method, differential formulation of the problem for the canonical area is obtained. The types of boundary conditions that need to be formulated for a new part of the boundary of the canonical area are prescribed. An iterative procedure for the stress-based geometrical immersion method is developed, and the convergence theorem for this iteration procedure is formulated in terms of the elements of these spaces of stress tensors. We consider a model problem, which has an exact solution and demonstrates the effectiveness of the geometrical immersion method. Application of the stress-based finite element method for solving the problem for the canonical area allows us to perform a comparative analysis of the rate and quality of practical convergence of the proposed scheme and the traditional displacement-based finite element method used in the software package ANSYS.
Downloads
References
Lur’e A.I. Teoria uprugosti. - M.: Nauka, 1970. - 940 s.
2. Novackij V. Teoria uprugosti. - M.: Mir, 1975. - 872 s.
3. Pobedra B.E. Cislennye metody v teorii uprugosti i plasticnosti. - M.: Izd-vo MGU, 1981. - 343 s.
4. Zienkiewicz O.C., Taylor R.L. The finite element method. Vol. 1: The basis. - Oxford: Butterworth-Heinemann, 2000. - 708 p.
5. Bate K.-U. Metody konecnyh elementov. - M.: Fizmatlit, 2010. - 1024 s.
6. Oganesan L.A., Ruhovec L.A. Variacionno-raznostnye metody resenia ellipticeskih uravnenij. - Erevan: Izd-vo AN Armanskoj SSR, 1979. - 335 s.
7. Sesenin S.V., Kuz’ I.S. Primenenie variacionno-raznostnogo metoda k osesimmetricnym zadacam teorii uprugosti // Uprugost’ i neuprugost’. - M.: Izd-vo MGU, 1987. - S. 39-44.
8. Berdicevskij V.L. Variacionnye principy mehaniki splosnoj sredy. - M.: Nauka, 1983. - 448 s.
9. Gallager R. Metod konecnyh elementov. Osnovy. - M.: Mir, 1984. - 428 s.
10. Girija Vallabhan C.V., Muluneh Azene. A finite element model for plane elasticity problems using the complementary energy theorem // Int. J. Numer. Meth. Eng. - 1982. - Vol. 18, no. 2. - P. 291-309. DOI
11. Sarigul N., Gallagher R.H. Assumed stress function finite element method: Two-dimensional elasticity // Int. J. Numer. Meth. Eng. -1989. - Vol. 28, no. 7. - P. 1577-1598. DOI
12. Tukalov U.A. Resenie zadac stroitel’noj mehaniki metodom konecnyh elementov v naprazeniah na osnove funkcionala dopolnitel’noj energii i principa vozmoznyh peremesenij / Diss... dokt. tehn. nauk: 05.23.17. - Kirov, VatGU, 2006. - 314 s.
13. Marcuk G.I. Metody vycislitel’noj matematiki. - M.: Nauka, 1980. - 536 s.
14. Konovalov A.N. Metod fiktivnyh oblastej v zadacah krucenia // Cislennye metody mehaniki splosnoj sredy. - 1973. - T. 4, No 2. - Novosibirsk: Izd-vo ITPM SO AN SSSR. - S. 109-115.
15. Sardakov I.N., Trufanov N.A., Matveenko V.P. Metod geometriceskogo pogruzenia v teorii uprugosti. - Ekaterinburg: Uro RAN, 1999. - 298 s.
16. Sardakov I.N. Teoreticeskie polozenia metoda geometriceskogo pogruzenia dla kraevyh zadac uprugoplasticeskogo tela // Obsie zadaci i metody issledovania plasticnosti i vazkouprugosti materialov i konstrukcij. - Sverdlovsk: UNC AN SSSR. - 1986. - C. 123-127.
17. Kulikov R.G., Trufanov N.A. Iteracionnyj metod resenia kvazistaticeskih nelinejnyh zadac vazkouprugosti // Vycisl. meh. splos. sred. - 2009. - T. 2, No 3. - S. 44-56. DOI
18. Pavlov S.M., Svetaskov A.A. Iteracionnyj metod resenia zadac linejnoj vazkouprugosti // Izvestia VUZov. Fizika. - 1993. - T. 36, No 4. - S. 129-137.
19. Svetaskov A.A. Prikladnye zadaci mehaniki vazkouprugih materialov. - Tomsk: Izd-vo Tomskogo politehniceskogo universiteta, 2012. - 205 s.
20. Matveenko V.P., Osipanov A.A. Konecno-elementnaa realizacia metoda geometriceskogo pogruzenia primenitel’no k ploskoj zadace teorii uprugosti v naprazeniah // Modeli i metody issledovania uprugogo i neuprugogo povedenia materialov i konstrukcij. - Sverdlovsk: UNC AN SSSR.- 1987. - C. 11-16.
21. Trufanov N.A., Kuznecova U.S. Konecno-elementnaa realizacia metoda geometriceskogo pogruzenia na osnove variacionnogo principa Kastil’ano dla ploskoj zadaci teorii uprugosti // Vestnik PNIPU. Mehanika. - 2013. - No 1. - S. 221-234.
22. S’arle F. Metod konecnyh elementov dla ellipticeskih zadac. - M.: Mir, 1980. - 512 s.
23. Sobolev S.L. Uravnenia matematiceskoj fiziki. - M.: Gostehizdat, 1947. - 440 s.
24. Mushelisvili N.I. Nekotorye osnovnye zadaci matematiceskoj teorii uprugosti. - M.: Nauka 1966. - 708 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.