Development and verification of a turbulent heat transport model for sodium-based liquid metal coolants
DOI:
https://doi.org/10.7242/1999-6691/2014.7.3.30Keywords:
heat transport model, sodium coolant, bundled software, flows of different temperatures, fast neutron reactorAbstract
Numerical simulation of heat-and-mass transfer in fast neutron reactors with sodium coolant performed based on commercial Computational Fluid Dynamics (CFD) software products is considered. It is shown that the Reynolds analogy used in most turbulence models cannot be applied to study the peculiarities of heat transport in liquid metal coolants. We present here results for a turbulent LMS (Liquid Metal Sodium) heat transport model capable of taking into account the unique characteristics of sodium coolants. Within the model, the turbulent Prandtl number expression is implemented, a correction that takes into account gravitational anisotropy of the turbulent heat flow is made, and the thermal wall function is introduced. The model is implemented in the bundled CDF FlowVision code, is compatible with theturbulence models and can be used in both the high (with wall functions) and low (without wall functions) Reynolds number calculations of sodium flow. The proposed LMS model has been verified on the basis of experimental data obtained in the TEFLU test facility (Karlsruhe, Germany). The test facility is intended to simulate mixing processes of sodium coolant flows of various temperatures. In the experiment, three flow regimes have been studied: “free convection” regime, “transient” regime, and “forced convection” regime. For these regimes, simulation results gained from the application of such commercial CFD bundled software products as ANSYS CFX, Star-CD, Fluent, and FlowVision with and without the LMS model are presented. It is shown that the results obtained using the bundled FlowVision software with the LMS model demonstrate better agreement with the experimental data compared to the data obtained using other bundled software products.
Downloads
References
Roelofs F., Gopala V.R., Van Tichelen K., Cheng X., Merzari E., Pointer W.D. Status and future challenges of CFD for liquid metal cooled reactors // Int. Conf. on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios. FR13, Paris, France, March 4-7, 2013. - 11 p.
2. Grotzbach G. Challenges in simulation and modeling of heat transfer in low-Prandtl number fluids // The 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. NURETH-14, Toronto, Canada, September 25-29, 2011. - 33 p.
3. Grotzbach G., Carteciano L.N. Validation of turbulence models in the computer code FLUTAN for free hot sodium jet in different buoyancy flow regimes. - Forschugszentrum Karlsruhe GmbH, Karlsruhe, FZKA 6600, 2003. - 34 p.
4. Wolters J. Benchmark Activity on the TEFLU Sodium Jet Experiment. - Forschungszentrum Julich GmbH, FZJ, 2002. - 66 p.
5. Zajcev A.M., Semenov V.N., Svecov U.E. Matematiceskoe modelirovanie smesenia raznotemperaturnyh struj metodom CABARET // Vycisl. meh. splos. sred. - 2013. - T. 6, No 4. - S. 430-437. DOI
6. Knebel J.U., Krebs L., Muller U., Axcell B.P. Experimental investigation of a confined heated sodium jet in a co-flow // J. Fluid Mech. - 1998. - Vol. 368. - P. 51-79. DOI
7. Sommer T.P., So R.M.C., Lai Y.G. A near-wall two-equation model for turbulent heat fluxes // Int. J. Heat Mass Tran. - 1992. - Vol. 35, no. 12. - P. 3375-3387. DOI
8. Nagano Y., Kim C. A two-equation model for heat transport in wall turbulent shear flows // J. Heat Transfer. - 1988. - Vol. 110, no. 3. - P. 583-589. DOI
9. Launder B.E. On the effects of a gravitational field on the turbulent transport of heat and momentum // J. Fluid Mech. - 1975. - Vol. 67, no. 3. - P. 569-581. DOI
10. RB-075-12 Rukovodstvo po bezopasnosti. Rascetnye sootnosenia i metodiki rasceta gidrodinamiceskih i teplovyh harakteristik elementov i oborudovania adernyh energeticeskih ustanovok s zidkometalliceskim teplonositelem, 2012.
11. Isacenko V.P., Osipova V.A., Sukomel A.S. Teploperedaca. - M.: Energoizdat, 1981. - 416 s.
12. Wilcox D.C. Turbulence modeling for CFD. - DCW Industries, Inc., 1994. - 460 p.
13. Zluktov S.V., Aksenov A.A., Harcenko S.A., Moskalev I.V., Susko G.B., Sisaeva A.S. Modelirovanie otryvnyh tecenij v programmnom komplekse FlowVision-HPC // Vycislitel’nye metody i programmirovanie. - 2010. - T. 11, No 1. - S. 234-245.
14. Osipov S.L., Rogozkin S.A., Fadeev I.D. Sopostavlenie rezul’tatov teplogidravliceskih rascetov po CFD kodam s dannymi bencmark-eksperimenta TEFLU // Naucno-tehniceskaa konferencia Teplofizika-2011: Sb. dokladov, Obninsk, 19-21 oktabra 2011 g. - Obninsk: GNC RF-FEI, 2013. - T. 2. - S. 377-390.
15. Buono S., Maciocco L., Morean V., Sorrentino L. CFD Simulation of a Heated Round Jet of Sodium (TEFLU Benchmark). - CRS4-Technical Report 00/86, 2001. - 20 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.