Energy aspects of wave propagation in the infinite cylindrical shell fully submerged into the liquid
DOI:
https://doi.org/10.7242/1999-6691/2014.7.3.29Keywords:
cylindrical shell, surface wave, shell vibrations, local and integral energy fluxesAbstract
The joint non-axisymmetric vibrations of an ideal acoustic liquid and an infinite thin empty cylindrical shell of Kirchhoff type are investigated. The first mode corresponds to this important type of vibrations. Vibrational modes associated with deformation of the cross-section of the shell are also considered. The problem of free vibrations of the shell submerged into the liquid space is studied in the rigorous mathematical statement. The exact analytical solution of this problem is analyzed. The source of vibration and acoustic fields in the system shell-liquid is the wave propagating through the shell from infinity. The high and low frequency asymptotics of the dispersion curves are analyzed. The propagating waves and energy flux in the system shell-liquid are determined. The case of negative group velocity (at positive phase velocity) of the waves and the sign of the energy flux components in the shell are discussed. The energy flux and its component are considered in the vicinity of quasitraverse points of dispersive curves. Different types of these points and their coordinates are asymptotically studied. The influence of relative velocities of the waves in the shell and fluid on the behavior of the entire system is explored. Comparison of various vibration modes is performed from the viewpoint of energy fluxes.
Downloads
References
Filippenko G.V. Energeticeskie aspekty osesimmetricnogo rasprostranenia voln v beskonecnoj cilindriceskoj obolocke, polnost’u pogruzennoj v zidkost’ // Vycisl. meh. splos. sred. - 2013. - T. 6, No 2. - S. 187-197. DOI
2. Sorokin S.V., Nielsen J.B., Olhoff N. Green’s matrix and the boundary integral equation method for analysis of vibration and energy flow in cylindrical shells with and without internal fluid loading // J. Sound Vib. - 2004. - Vol. 271, no. 3-5. - P. 815-847. DOI
3. Sorokin S.V., Ershova O.A. Plane wave propagation and frequency band gaps in periodic plates and cylindrical shells with and without heavy fluid loading // J. Sound Vib. - 2004. - Vol. 278, no. 3. - P. 501-526. DOI
4. Sorokin S.V. Analysis of vibrations and energy flows in sandwich plates bearing concentrated masses and spring-like inclusions in heavy fluid loading conditions // J. Sound Vib. - 2002. - Vol. 253, no. 2. - P. 485-505. DOI
5. Fuller C.R., Fahy F.J. Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid // J. Sound Vib. - 1982. - Vol. 81, no. 4. - P. 501-518. DOI
6. Pavic G. Vibrational energy flow in elastic circular cylindrical shells // J. Sound Vib. - 1990. - Vol. 142, no. 2. - P. 293-310. DOI
7. Pavic G. Vibroacoustical energy flow through straight pipes // J. Sound Vib. - 1992. - Vol. 154, no. 3. - P. 411-429. DOI
8. Feng L. Acoustic properties of fluid-filled elastic pipes // J. Sound Vib. - 1994. - Vol. 176, no. 3. - P. 399-413. DOI
9. Xu M.B., Zhang W.H. Vibrational power flow input and transmission in a circular cylindrical shell filled with fluid // J. Sound Vib. - 2000. - Vol. 234, no. 3. - P. 387-403. DOI
10. Filippenko G.V. Kolebania truboprovodov i tonkostennyh opor gidrotehniceskih sooruzenij, pogruzennyh v zidkost’ // Sovremennoe masinostroenie. Nauka i obrazovanie: Materialy 2-j Mezdunar. nauc.-prakt. konferencii. - SPb.: Izd-vo Politehn. un-ta, 2012. - S. 769-778.
11. Eliseev V.V., Zinov’eva T.V. Nelinejno-uprugaa deformacia podvodnogo truboprovoda v processe ukladki // Vycisl. meh. splos sred. - 2012. - T. 5, No 1. - S. 70-78. DOI
12. Filippenko G.V. The forced oscillations of the cylindrical shell partially submerged into a layer of liquid // Proc. of the Int. Conf. "Days on Diffraction 2012", St.-Petersburg, Russia, May 28-June 1, 2012. - P. 70-75. DOI
13. Filippenko G.V. Statement of the boundary-contact problems for the shells in acoustics // Proc. of the Int. Conf. "Days on Diffraction 2010", St.-Petersburg, Russia, June 8-10, 2010. - P. 57-62.
14. Eliseev V.V. Mehanika uprugih tel. - SPb.: Izd-vo SPbGPU, 2003. - 336 s.
15. Filippenko G.V. The energy analysis of shell-fluid interaction // Proc. of the Int. Conf. "Days on Diffraction 2011", St.-Petersburg, Russia, May 30-June 3, 2011. - P. 63-66.
16. Filippenko G.V., Kouzov D.P. Boundary-contact problems of acoustics. The review of last results // 7th Int. Symp. "Transport Noise and Vibration", St.-Petersburg, Russia, June 8-10, 2004, CD format, Article no. pl08, 13 p.
17. Gol’denvejzer A.L., Lidskij V.B., Tovstik P.E. Svobodnye kolebania tonkih uprugih obolocek. - M.: Nauka, 1979. - 384 s.
18. Zinov’eva T.V. Dispersia voln v cilindriceskoj obolocke // Naucno-tehniceskie vedomosti SPbGPU. - 2007. - No 52-1. - S. 53-58.
19. Manconi E., Sorokin S. On the effect of damping on dispersion curves in plates // Int. J. Solids Struct. - 2013. - Vol. 50, no. 11-12. - P. 1966-1973. DOI
20. Vesev V.A., Kouzov D.P., Mirolubova N.A. O protivonapravlennyh potokah energii normal’nyh voln, rasprostranausihsa v tonkostennyh volnovodah // Analiz i sintez nelinejnyh mehaniceskih kolebatel’nyh sistem: Tr. XXIV letnej skoly-seminara. - SPb: Izd-vo IPMas RAN, 1997. - S. 71-78.
21. Vesev V.A., Kouzov D.P., Mirolubova N.A. Potoki energii i dispersia normal’nyh voln izgibnogo tipa v balke krestoobraznogo profila // Akusticeskij zurnal. - 1999. - T. 45, No 3. - S. 331-337.
22. Kouzov D.P., Mirolubova N.A. Lokal’nye potoki energii vynuzdennyh kolebanij tonkoj uprugoj polosy // Vycisl. meh. splos. sred. - 2012. - T. 5, No 4. - S. 397-404. DOI
23. Sorokin S.V. The Green’s matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs // J. Acoust. Soc. Am. - 2011. - Vol. 129, no. 3. - P. 1315-1323. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.