Study of the spectral stability of generalized Runge-Kutta methods applied to numerical integration of the initial-bounary value problem for the transport equation

Authors

  • Andrey Petrovich Yankovskii Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

DOI:

https://doi.org/10.7242/1999-6691/2014.7.3.28

Keywords:

generalized Runge-Kutta methods, transport equation, spectral stability, initial problem, stability function, finite-difference schemes

Abstract

Based on the harmonics method, the spectral stability of the generalized Runge-Kutta methods of the first and second order of accuracy in time step is investigated analytically for numerical integration of the initial-boundary value problem for the transport equation. It is shown that some classical explicit and implicit finite-difference schemes of integration of the initial-boundary value problem for the transport equation is a consequence of the consistent application of the generalized and ordinary Runge-Kutta methods to all independent variables. A general algorithm for the analysis is developed to study the spectral stability of the generalized multi-stage Runge-Kutta methods of different orders of accuracy for transport equation integration. The spectral stability of various explicit and implicit generalized Runge-Kutta methods is explored. It has been found that all the explicit methods are spectral unstable, and all the implicit methods are spectral stable, and the implicit methods based on the formulas of Rado, Lobatto IIIC, Nereta and Burridge are asymptotically stable, whereas the methods of Gauss-Legendre, Lobatto IIIA, Lobatto IIIB of all orders of accuracy (although they are spectral stable) are not asymptotically stable. Comparison of the approximate solutions obtained by different generalized Runge-Kutta methods with the exact solution is carried out under complex-fluctuating initial conditions involving large modulo derivatives conditionally modeling the impact of shocks. It turns out that the numerical results obtained by the Rado formulas of high order of accuracy are the best. The possibilities of using the proposed approach for studying the spectral stability of the generalized Runge-Kutta methods applied to numerical integration of systems of first-order equations of hyperbolic type in one- and multi-dimensional cases are outlined.

Downloads

Download data is not yet available.

References

Samarskij A.A., Popov U.P. Raznostnye shemy gazovoj dinamiki. - M.: Editorial URSS, 2009. - 424 s.
2. Manzosov V.K., Slepuhin V.V. Modelirovanie prodol’nogo udara v sterznevyh sistemah neodnorodnoj struktury. - Ul’anovsk: UlGTU, 2011. - 208 s.
3. Huang W. Variational mesh adaptation: isotropy and equidistribution // J. Comput. Phys. - 2001. - Vol. 174, no. 2. - P. 903-924. DOI
4. Lisejkin V.D., Sokin U.I., Vaseva I.A., Lihanova U.V. Tehnologia postroenia raznostnyh setok. - Novosibirsk: Nauka, 2009. - 414 s.
5. Dekker K., Verver A. Ustojcivost’ metodov Runge-Kutty dla zestkih nelinejnyh differencial’nyh uravnenij. - M.: Mir, 1988. - 334 s.
6. Nemirovskij U.V., Ankovskij A.P. Cislennoe integrirovanie dvumernyh kraevyh zadac s bol’simi gradientami resenia // ZVT. - 2000. - T. 5, No 4. - S. 82-96.
7. Nemirovskij U.V., Ankovskij A.P. Obobsenie metodov Runge-Kutty i ih primenenie k integrirovaniu nacal’no-kraevyh zadac matematiceskoj fiziki // SibZVM. - 2005. - T. 8, No 1. - S. 57-76.
8. Erhov M.I. Teoria ideal’no plasticeskih tel i konstrukcij. - M.: Nauka, 1978. - 352 s.
9. Bazenov V.G., Pavlenkova E.V., Artem’eva A.A. Cislennoe resenie obobsennyh osesimmetricnyh zadac dinamiki uprugoplasticeskih obolocek vrasenia pri bol’sih deformaciah // Vycisl. meh. splos. sred. - 2012. - T. 5, No 4. - S. 427-434. DOI
10. Tkacenko O.P. Cislennyj analiz dinamiki krivolinejnogo truboprovoda // Vycisl. meh. splos. sred. - 2012. - T. 5, No 3. - S. 345-353. DOI
11. Levin V.A., Nadkrinicnyj L.V. Cislennoe issledovanie generacii voln na poverhnosti pri pogruzenii tverdogo tela v zidkost’ // Vycisl. meh. splos. sred. - 2011. - T. 4, No 1. - S. 65-73. DOI
12. Lipanov A.M., Karskanov S.A. Primenenie shem vysokogo poradka approksimacii pri modelirovanii processov tormozenia sverhzvukovyh tecenij v pramougol’nyh kanalah // Vycisl. meh. splos. sred. - 2013. - T. 6, No 3. - S. 292-299. DOI
13. Zienkiewicz O.C., Taylor R.L. The finite element method. - Oxford: Butterworth-Heinemann, 2000. - 707 p.
14. Kuz’min M.A., Lebedev D.L., Popov B.G. Procnost’, zestkost’, ustojcivost’ elementov konstrukcij. Teoria i praktikum. Rascety na procnost’ elementov mnogoslojnyh kompozitnyh konstrukcij: Uceb. posobie. - M.: Izd-vo MGTU im. N.E. Baumana, 2012. - 344 s.
15. Banjai L., Messner M., Schanz M. Runge-Kutta convolution quadrature for the boundary element method // Comput. Method. Appl. M. - 2012. - Vol. 245-246. - P. 90-101. DOI
16. Igumnov L.A., Ratausko A.U. Sagovyj metod obrasenia preobrazovania Laplasa na uzlah shemy Runge-Kutty // Problemy procnosti i plasticnosti. - 2013. - No 75-3. - S. 178-184.
17. Nemirovskij U.V., Ankovskij A.P. Integrirovanie zadaci dinamiceskogo uprugoplasticeskogo izgiba armirovannyh sterznej peremennogo poperecnogo secenia obobsennymi metodami Runge-Kutty // ZVT. - 2004. - T. 9, No 4. - S. 77-95.
18. Rozdestvenskij B.L., Anenko N.N. Sistemy kvazilinejnyh uravnenij. - M.: Nauka, 1969. - 592 s.
19. Samarskij A.A. Teoria raznostnyh shem. - M.: Nauka, 1989. - 616 s.
20. Berezin I.S., Zidkov N.P. Metody vycislenij. - M.: Fizmatgiz, 1959. - T. 2. - 620 s.

Published

2014-10-10

Issue

Section

Articles

How to Cite

Yankovskii, A. P. (2014). Study of the spectral stability of generalized Runge-Kutta methods applied to numerical integration of the initial-bounary value problem for the transport equation. Computational Continuum Mechanics, 7(3), 279-294. https://doi.org/10.7242/1999-6691/2014.7.3.28