Numerical simulation of electroconvection of a poorly conducting fluid in an alternating electric field
DOI:
https://doi.org/10.7242/1999-6691/2014.7.3.26Keywords:
eight-mode electroconvection model, alternating electric field, poorly conducting fluidAbstract
Electroconvection of a poorly conducting fluid in an alternating electric field of a horizontal capacitor is studied. Electroconductive charge formation mechanism which is associated with the temperature dependence of electrical conductivity is considered The simulation is carried out, taking into account a finite charge relaxation time, for a set of problem parameters corresponding to real fluids used in electrical engineering, e.g. capacitor or transformer oils. A system of eight nonlinear differential equations is obtained using the Galerkin method. The system is solved by the Runge-Kutta-Merson fourth-order method. The mechanical-equilibrium stability boundary of the fluid in the capacitor is constructed on the parameter plane “modulation amplitude -external field period”. The evolution of arising flows in the supercritical area is analyzed, and the relationship between the intensity of convective flows and the dimensionless electric parameter is obtained at several frequencies. The spectral composition of the dynamic system response is determined using the fast Fourier transform. Different types of electroconvection oscillatory regimes are detected. It is shown that the solutions belong to the synchronous response at all frequencies of the external field, but they can be divided into two groups, which differ by the value of a heat flow through the capacitor. The areas of coexistence of regimes with different heat flow values are found. A transition from periodic to chaotic oscillations is investigated. It has been found that the transition to chaos is realized through a period-doubling cascade.
Downloads
References
Melent’ev A.B., Tarunin E.L. Effekty asimmetricnyh kolebanij v konvekcii // Vycisl. meh. splos. sred. - 2012. - T. 5, No 3. - S. 284-291. DOI
2. Smorodin B.L., Lucke M. Convection in binary fluid mixtures with modulated heating // Phys. Rev. E. - 2009. - Vol. 79. - 026315. DOI
3. Il’in V.A., Smorodin B.L. Periodiceskie i haoticeskie rezimy elektrokonvekcii zidkogo dielektrika v gorizontal’nom kondensatore // Pis’ma v ZTF. - 2005. -T. 31, No 10. - S. 57-63. DOI
4. Smorodin B.L., Taraut A V. Dinamika volnovyh elektrokonvektivnyh tecenij v modulirovannom elektriceskom pole // ZETF. - 2014. - T. 145, No 1. - S. 180-188. DOI
5. Lubimova T.P., Parsakova A.N. Vlianie vrasatel’nyh vibracij na tecenia i teplomassoobmen pri vyrasivanii kristallov germania vertikal’nym metodom Bridzmena // Vycisl. meh. splos. sred. - 2008. - T. 1, No 1. - S. 57-67. DOI
6. Burnyseva A.V., Lubimov D.V., Lubimova T.P. Spektr vozmusenij ploskoj poverhnosti razdela zidkostej v pole vysokocastotnyh kasatel’nyh vibracij v usloviah nevesomosti // Vycisl. meh. splos. sred. - 2011. - T. 4, No 3. - S. 21-31. DOI
7. Kolcanova E.A., Lubimov D.V., Lubimova T.P. Vlianie effektivnoj pronicaemosti sredy na ustojcivost’ dvuhslojnoj sistemy <> v pole vibracij vysokoj castoty // Vycisl. meh. splos. sred. - 2012. - T. 5, No 2. - S. 225-232. DOI
8. Lubimov D.V., Lubimova T.P., Ponomareva K.V., Hlybov O.A. Cislennoe modelirovanie nestacionarnogo povedenia stratificirovannoj zidkosti s pomesennym v nee tverdym telom v vysokocastotnom vibracionnom pole // Vycisl. meh. splos. sred. - 2013. - T. 6, No 3. - S. 269-276. DOI
9. Saranin V.A. Ustojcivost’ ravnovesia, zaradka, konvekcia i vzaimodejstvie zidkih mass v elektriceskih polah. - M.-Izevsk: Izd-vo Regularnaa i haoticeskaa dinamika, 2009. - 332 s.
10. Zakin A.I. Elektrogidrodinamika // UFN. - 2012. - T. 182, No5. - S. 495-520. DOI
11. Bologa M.K., Grosu F.P., Kozuhar’ I.A. Elektrokonvekcia i teploobmen. - Kisinev: Stiinca, 1977. - 320 c.
12. Il’in V.A., Smorodin B.L. Konvekcia omiceskoj zidkosti v peremennom elektriceskom pole // Vestnik PGU. Seria: Fizika. - 2003. - No 1. - S. 102-107.
13. Il’in V.A., Ponomareva L.A. Elektrokonvekcia slaboprovodasej zidkosti v vysokocastotnom elektriceskom pole // Vestnik PGU. Seria: Fizika. - 2013. - No 3 (25). - S. 28-36.
14. Il’in V.A., Smorodin B.L. Nelinejnye rezimy konvekcii slaboprovodasej zidkosti // Pis’ma v ZTF. - 2007. - T. 33, No 8. - S. 81-87. DOI
15. Il’in V.A. Elektrokonvekcia slaboprovodasej zidkosti v postoannom elektriceskom pole // ZTF. - 2013. - T. 83, No 1. - S. 64-73. DOI
16. Gross M.J., Porter J.E. Electrically induced convection in dielectric liquids // Nature. - 1966. - Vol. 212. - P. 1343-1345. DOI
17. Kosvincev S.R. Eksperimental’noe issledovanie elektrokonvektivnoj neustojcivosti neodnorodno nagretoj slaboprovodasej zidkosti / Diss.. kand. fiz.-mat. nauk: 01.02.05. - Perm’, PGU, 1993. - 139 s.
18. Zdanov S.A., Kosvincev S.R., Makarihin I.U. Vlianie elektriceskogo pola na ustojcivost’ termogravitacionnogo tecenia v vertikal’nom kondensatore // ZETF. - 2000. - T. 117, No 2. - S. 398-406. DOI
19. Kosvintsev S.R., Makarikhin I.Yu., Zhdanov S.A., Velarde M.G. Electroconvective instability of thermogravitational flow in a vertical capacitor // Proc. of 13th Int. Conf. on Dielectric Liquids (ICDL ’99). Nara, Japan, July 20-25, 1999. - P. 37-40.
20. Berze P., Pomo I., Vidal’ K. Poradok v haose. O deterministskom podhode k turbulentnosti. - M.: Mir, 1991. - 368 c.
21. Finucane R.G., Kelly R.E. Onset of instability in a fluid layer heated sinusoidally from below // Int. J. Heat Mass Tran. -1976. - Vol. 19, no. 1. - P. 71-85. DOI
22. Ahlers G., Hohenberg P.C., Lucke M. Thermal convection under external modulation of the driving force. II. Experiments // Phys. Rev. A. - 1985. - Vol. 32. - P. 3519-3534.
23. Rabinovic M.I., Trubeckov D.I. Vvedenie v teoriu kolebanij i voln. - M.: Nauka, 1984. - 432 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.