Numerical simulations of gas microbubble dynamics in an acoustic field with the influence of rectified diffusion
DOI:
https://doi.org/10.7242/1999-6691/2014.7.3.23Keywords:
bubble dynamics, rectified diffusion, conservative scheme, acoustic fieldAbstract
A numerical method for simulation of the diffusion problem for a single gas bubble oscillating in unbounded weakly compressible liquid in an acoustic field is developed. The method enables computation of nonlinear dynamics of bubbles of variable mass. The total mass of the dissolved gas and the gas in the bubble is conserved by enforcing conservation in the discrete scheme. For this purpose a conservative scheme based on an integro-interpolative method is applied for computation of the diffusion flux. Generally, a study of the effect of rectified diffusion on bubble dynamics requires significant computational time. To reduce it, an approximation based on the assumption on quasistationary character of oscillations of the dissolved gas concentration is developed. This enables investigation of rectified diffusion during millions of periods of oscillations. The numerical results obtained by the proposed method are in good agreement with the available experimental data. Comparison of the bubble mass change using the presented scheme and the standard scheme, which does not conserve the total mass of the gas-liquid system, reveals that in the latter case the numerical error may accumulate and lead to physically incorrect results.
Downloads
References
Blake F.G. Onset of cavitation in liquids / PhD thesis. - Harvard University, Cambridge, MA, 1949. - 49 p.
2. Hsieh D.-Y., Plesset M.S. Theory of rectified diffusion of mass into gas bubbles // J. Acoust. Soc. Am. - 1961. - Vol. 33, no. 2. - P. 206-215. DOI
3. Eller A., Flynn H.G. Rectified diffusion during nonlinear pulsations of cavitation bubbles // J. Acoust. Soc. Am. - 1965. - Vol. 37, no. 3. - P. 493-503. DOI
4. Crum L.A., Hansen G.M. Generalized equations for rectified diffusion // J. Acoust. Soc. Am. - 1982. - Vol. 72, no. 5. - P. 1586-1592. DOI
5. Al’-Mannaj M., Habeev N. S. O radial’nyh pul’saciah rastvorimyh parogazovyh puzyr’kov v zidkosti // MZG. - 2011. - No 2. - S. 131-135. DOI
6. Barber B.P., Putterman S.J. Observation of synchronous picosecond sonoluminescence // Nature. - 1991. - Vol. 352. - P. 318-320. DOI
7. Fyrillas M.M., Szeri A.J. Dissolution or growth of soluble spherical oscillating bubbles // J. Fluid Mech. - 1994. - Vol. 277. - P. 381-407. DOI
8. Lofstedt R., Weninger K., Putterman S., Barber B.P. Sonoluminescing bubbles and mass diffusion // Phys. Rev. E. - 1995. - Vol. 51. - P. 4400-4410. DOI
9. Hilgenfeldt S., Lohse D., Brenner M.P. Phase diagrams for sonoluminescing bubbles // Phys. Fluids. - 1996. - Vol. 8. - P. 2808-2826. DOI
10. Akhatov I., Gumerov N., Ohl C.D., Parlitz U., Lauterborn W. The role of surface tension in stable single-bubble sonoluminescence // Phys. Rev. Lett. - 1997. - Vol. 78, no. 2. - P. 227-230. DOI
11. Louisnard O., Gomez F. Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids // Phys. Rev. E. - 2003. - Vol. 67, no. 32. - 036610. DOI
12. Sile T., Virbulis J., Timuhins A., Sennikovs J., Bethers U. Modelling of cavitation and bubble growth during ultrasonic cleaning process // Proc. of International Scientific Colloquium Modelling for Material Processing. Riga, Latvia, September 16-17, 2010. - P. 329-334.
13. Naji Meidani A.R., Hasan M. Mathematical and physical modelling of bubble growth due to ultrasound // Appl. Math. Model. - 2004. - Vol. 28, no. 4. - P. 333-351. DOI
14. Keller J.V., Miksis M. Bubble oscillations of large amplitude // J. Acoust. Soc. Am. - 1980. - Vol. 68, no. 2. - P. 628-633. DOI
15. Tihonov A.N., Samarskij A.A. Uravnenia matematiceskoj fiziki. - M.: Nauka, 1977. - 736 s.
16. Crank J., Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type // Math. Proc. Cambridge. - 1947. - Vol. 43, no. 1. - P. 50-67. DOI
17. Hajrer E., Nersett S., Vanner G. Resenie obyknovennyh differencial’nyh uravnenij. Nezestkie zadaci. - M.: Mir, 1990. - 512 s.
18. Volkova E.V., Nasibullaeva E.S., Gumerov N.A. Numerical simulations of soluble bubble dynamics in acoustic fields // Proc. of the ASME 2012 International Mechanical Engineering Congress and Exposition (IMECE 2012), November 9-15, 2012, Houston, Texas, USA. - 1 CD ROM, 2012. - Article 86243. - P. 317-323. DOI
19. Crum L. A. Measurements of the growth of air bubbles by rectified diffusion // J. Acoust. Soc. Am. - 1980. - Vol. 68, no. 1. - P. 203-211. DOI
20. Eller A.I. Damping constants of pulsating bubbles // J. Acoust. Soc. Am. - 1970. - Vol. 47. - P. 1469-1470. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.