Application of discrete Fourier series to the stress analysis of shell structures

Authors

  • Igor Georgievich Emel’yanov Institute of Engineering Science UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2015.8.3.20

Keywords:

orthotrophic rotation shells, stress state, virtual element, discrete Fourier-series method, Godunov’s method of discrete orthogonalization

Abstract

A method for the solution of problems associated with determination of the stress state of shells of revolution using a discrete Fourier-series method is proposed. In the present work the classical theory based on Kirchhoff-Lova hypotheses is used to describe the stress state of shells. The problem of determination of the stress state of a shell with variable parameters along a generatrix is reduced to the solution of the system of partial differential equations. Discrete Fourier series are the set of functions defined on a discrete set of points. This method allows one to reduce the dimension of the problem and to solve it by the numerical Godunov’s method of discrete orthogonalization. As the approach based on application of a discrete Fourier-series for the functions set on a discrete ensemble of points is used, the curvilinear grid with an equal step on a meridian is plotted on the shell surface. The circles obtained are broken into equal amounts. This yields a set of virtual shell elements. It is recognized that the value of distributed loads on this set of virtual elements is known. We suggest to approximate loads using a discrete Fourier series expansion in cosines and sines, which makes it possible to describe any asymmetric loading. Examples of application of analytical and discrete Fourier series to calculation of isotropic and the orthotrophic of shells are given. The errors in approximating the given functions are defined by discrete series. For all the problems the necessary number of harmonics is determined. On necessary retention of the quantity of summable harmonics, the approximating function describes rather precisely various external superficial loading modes. The approximation error obtained by the Fourier series expansion method proposed here is insignificant, and this provides a description of any asymmetric loading. Application of discrete Fourier series makes it possible to reduce the dimension of the problem and to determine the stress state of shells of revolution.

Downloads

Download data is not yet available.

References

Biderman V.L. Mehanika tonkostennyh konstrukcij. - M.: Masinostroenie, 1977. - 488 s.
2. Grigorenko A.M., Vasilenko A.T. Metody rasceta obolocek: v 5-ti tt. - Kiev: Naukova dumka, 1981. - T. 4. Teoria obolocek peremennoj zestkosti. - 544 s.
3. Lukasevic S. Lokal’nye nagruzki v plastinah i obolockah. - M.: Mir, 1982. - 544 s.
4. Obrazcov I.F., Nerubajlo B.V., Ol’sanskij V.P. Obolocki pri lokalizovannyh vozdejstviah (obzor rabot, osnovnye rezul’taty i napravlenia issledovanij). - Moskva, 1988. - 192 s. - Dep. v VINITI 12.02.88.
5. Grigorenko Ya.M., Rozhok L.S. Discrete Fourier-series method in problems of bending of variable-thickness rectangular plates // J. Eng. Math. - 2003. - Vol. 46, no 3-4. - P. 269-280. DOI
6. Grigorenko Ya.M., Tsybul’nik V.A. Application of discrete Fourier series in the stress analysis of cylindrical shells of variable thickness with arbitrary end conditions // Int. Appl. Mech. - 2005. - Vol. 41, no. 6. - P. 657-665.
7. Grigorenko A.M. Resenie kraevyh zadac o naprazennom sostoanii uprugih tel sloznoj geometrii i struktury s primeneniem diskretnyh radov Fur’e // Prikladnaa mehanika. - 2009.- T. 45, No 5.- S. 3-52. DOI
8. Emel’anov I.G., Kuznecov A.V. Primenenie virtual’nyh elementov pri opredelenii naprazennogo sostoania obolocek vrasenia // Vycisl. meh. splos. sred. - 2014. - T. 7, No 3. - S. 245-252. DOI
9. Godunov S.K. O cislennom resenii kraevyh zadac dla sistem linejnyh obyknovennyh differencial’nyh uravnenij // UMN. - 1961. - T. 16, No 3(99). - S. 171-174. (URL: http://www.mathnet.ru/links/c99fb080e5e6111a5c9b5260e37010a1/rm6626.pdf).
10. Korn G., Korn T. Spravocnik po matematike dla naucnyh rabotnikov i inzenerov. - SPb.: Lan’, 2003. - 832 s.
11. Hemming R.V. Cislennye metody dla naucnyh rabotnikov i inzenerov. - M.: Nauka, 1968. - 400 s.
12. Tolstov G.P. Rady Fur’e. - M.: Fizmatgiz, 1960. - 390 s.
13. Lancos K. Prakticeskie metody prikladnogo analiza. - M.: Fizmatgiz, 1961. - 524 s. DOI
14. Emelyanov I.G., Kuznetsov A.V. The stressed state of shell structures under local loads // Journal of Machinery Manufacture and Reliability. - 2014. - Vol. 43, no. 1. - P. 42-47. DOI
15. Gallager R. Metod konecnyh elementov. Osnovy. - M.: Mir, 1984. - 428 s.
16. Ba-hussejn A.A. Diskretnoe preobrazovanie Fur’e. http://ilab.xmedtest.net/?q=node/3740 (data obrasenia: 01.06.2015).
17. Basov K.A. ANSYS: Spravocnik pol’zovatela. - M.: DMK Press, 2005.- 640 s.
18. Alamovskij A.A. SolidWorks/COSMOSWorks. Inzenernyj analiz metodom konecnyh elementov. - M.: DMK Press, 2004.- 432 s.
19. Emelyanov I.G., Mironov V.I. Contact problem for a shell considering the transverse load // Journal of Machinery Manufacture and Reliability. - 2013. - Vol. 42, no. 1. - P. 36-40. DOI

Published

2015-09-30

Issue

Section

Articles

How to Cite

Emel’yanov, I. G. (2015). Application of discrete Fourier series to the stress analysis of shell structures. Computational Continuum Mechanics, 8(3), 245-253. https://doi.org/10.7242/1999-6691/2015.8.3.20