Study of visco-elastic-plastic properties of thermoplastic polymers. An integrated experimental and theoretical approach

Authors

  • Oleg Konstantinovich Garishin Institute of Continuous Media Mechanics UB RAS
  • Anton Sergeevich Korlyakov Institute of Continuous Media Mechanics UB RAS
  • Vladimir Vasilievich Shadrin Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2014.7.2.21

Keywords:

thermoplastic materials, polyolefines, finite deformations, elastoplasticity, viscoelasticity, symbolic schemes, Runge-Kutta method, Nelder-Mead simplex method

Abstract

The paper describes an integrated experimental and theoretical approach to the study of complex mechanical behavior of thermoplastic polymers under finite deformations. It includes a special experimental technique that allows us to obtain during a single test the necessary data on viscoelastic and elastoplastic polymer properties, as well as a phenomenological differential type model designed for decoding and simulating experimental results. The experimental program consists of the cyclic deformation of sample and includes: stretching - stress relaxation - reducing strain to some predetermined constant value of tensile strength - stress relaxation - next cycle of loading. Each subsequent cycle is performed with increasing strain amplitude. The phenomenological model is based on a differential approach to the construction of constitutive equations of the mechanical behavior of materials with the help of symbolic schemes. This approach uses the mathematical apparatus of mechanics of nonlinear finite deformations involving Runge-Kutta computing method and Nelder-Mead simplex method. The symbolic model scheme consists of two parallel branches containing two serially connected elements: a) elastic and plastic, b) elastic and viscous. The elastoplastic branch represents the behavior of agglomerates of more rigid crystallites, their displacement and destruction during deformation. The viscoelastic branch describes the flow of the amorphous polymer phase. The experimental data obtained for polyethylene PE 107-02K were theoretically analyzed using this model. Dependencies of elastic, plastic and viscous model parameters on polymer deformation were obtained. A comparison of the calculated and experimental results shows high coincidence, which is indicative of the fact that the conclusions drawn from the analysis of the model parameters are close to reality.

Downloads

Download data is not yet available.

References

Fiser Dz.M. Usadka i koroblenie otlivok iz termoplastov: Spravocnik. - SPb.: Professia, 2009. - 424 s.
2. G’Sell C., Haudin J.-M. Sillion B., Billardon R. Introduction a la mecanique des polymers. - INPL, Vandoeuvre-les-Nancy, France, 1995. - 430 p.
3. Uajt Dz.L., Coj D.D. Polietilen, polipropilen i drugie poliolefiny. - SPb.: Professia, 2006. - 256 s.
4. Enciklopedia polimerov. - M.: Sovetskaa enciklopedia, 1977. - 1151 c.
5. Guseva M.A. Struktura i fiziko-mehaniceskie svojstva nanokompozitov na osnove nepolarnogo polimera i sloevogo silikata / Diss.. kand. fiz.-mat. nauk: 01.04.07. - M.: INHS RAN, 2005. - 161 s.
6. Meyer R.W., Pruitt L.A. The effect of cyclic true strain on the morphology, structure, and relaxation behavior of ultra high molecular weight polyethylene // Polymer. - 2001. - Vol. 42, no. 12. - P. 5293-5306. DOI
7. Bergstrom J.S., Rimnac C.M., Kurtz S.M. An augmented hybrid constitutive model for simulation of unloading and cyclic loading behavior of conventional and highly crosslinked UHMWPE // Biomaterials. - 2004. - Vol. 25, no. 11. - P. 2171-2178. DOI
8. Ayoub G., Zairi F., Nait-Abdelaziz M., Gloaguen J.M. Modelling large deformation behaviour under loading-unloading of semicrystalline polymers: Application to a high density polyethylene // Int. J. Plasticity. - 2010. - Vol. 26, no. 3. - P. 329-347. DOI
9. Kastner M., Obst M., Brummund J., Thielsch K., Ulbricht V. Inelastic material behavior of polymers - Experimental characterization, formulation and implementation of a material model // Mech. Mater. - 2012. - V. 52. - P. 40-57. DOI
10. Drozdov A.D., Klitkou R., Christiansen J.C. Cyclic viscoplasticity of semicrystalline polymers with finite deformations // Mech. Mater. - 2013. - Vol. 56. - P. 53-64. DOI
11. Kristensen R. Vvedenie v teoriu vazkouprugosti. - M.: Mir, 1974. - 340 c.
12. Blend D.R. Teoria linejnoj vazkouprugosti. - M.: Mir, 1965. - 200 s.
13. Adamov A.A., Matveenko V.P., Trufanov N.A., Sardakov I.N. Metody prikladnoj vazkouprugosti. - Ekaterinburg: UrO RAN, 2003. - 411 s.
14. Pozdeev A.A., Trusov P.V., Nasin U.I. Bol’sie uprugoplasticeskie deformacii: teoria, algoritmy, prilozenia. - M.: Nauka, 1986. - 232 s.
15. Holzapfel G.A. On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures // Int. J. Numer. Meth. Eng. - 1996. - Vol. 39, no. 22. - P. 3903-3926. DOI
16. Govindjee S., Reese S. A presentation and comparison of two large deformation viscoelasticity models // J. Eng. Mater. Technol. - 1997. - Vol. 119, no. 3. - P. 251-255. DOI
17. Lion A. Thixotropic behavior of rubber under dynamic loading histories: experiments and theory // J. Mech. Phys. Solids. - 1998. - Vol. 46, no. 5. - P. 895-930. DOI
18. Haupt P., Lion A., Backhaus E. On the dynamic behaviour of polymers under finite strains: constitutive modelling and identification of parameters // Int. J. Solids Struct. - 2000. - Vol. 37, no. 26. - P. 3633-3646. DOI
19. Reese S., Govindjee S. A theory of finite viscoelasticity and numerical aspects // Int. J. Solids Struct. - 1998. - Vol. 35, no. 26-27. - P. 3455-3482. DOI
20. Novoksanov R.S., Rogovoj A.A. Evolucionnye opredelausie sootnosenia dla konecnyh vazkouprugih deformacij // MTT. - 2005. - No 4. - S. 122-140.
21. Garisin O.K., Svistkov A.L., Gerasin V.A., Guseva M.A. Modelirovanie uprugoplasticeskogo povedenia poliolefinovyh nanokompozitov s razlicnoj strukturoj sloistogo napolnitela // Vysokomolekularnye soedinenia. - 2009. - T. 51, No 4. - S. 610-619. DOI
22. Garisin O.K., Gerasin V.A., Guseva M.A. Issledovanie uprugoplasticeskih svojstv polimer-silikatnyh nanokompozitov s ucetom izmenenia ih ob"ema pri deformirovanii // Vysokomolekularnye soedinenia. - 2011. - T. 53, No 12. - S. 2106-2118. DOI
23. Olejnik E.F. Plasticnost’ casticno-kristalliceskih gibkocepnyh polimerov na mikro- i mezourovnah // Vysokomolekularnye soedinenia. - 2003. - T. 45, No 12. - S. 2137-2264.
24. Palmov V.A. Comparison of different approaches in viscoelastoplasticity for large strain // ZAMM. - 2000. - Vol. 80, no. 11-12. - P. 801-806. DOI
25. Pal’mov V.A., Stajn E. Razlozenie konecnoj uprugoplasticeskoj deformacii na upruguu i plasticeskuu sostavlausie // Vestnik PGTU. Matematiceskoe modelirovanie sistem i processov. - 2001. - No 9. - S. 110-126.
26. Svistkov A.L., Lauke B. Differencial’nye opredelausie uravnenia neszimaemyh sred pri konecnyh deformaciah // PMTF. - 2009. - T. 50, No 3. - S. 158-170. DOI
27. Treloar L. Fizika uprugosti kaucuka. - M.: IL, 1953. - 240 s.
28. Gul’ V.E., Kuleznev V.N. Struktura i mehaniceskie svojstva polimerov. - M.: Vyssaa skola, 1972. - 320 s.
29. Pisarenko G.S., Mozarovskij N.S. Uravnenia i kraevye zadaci teorii plasticnosti i polzucesti. - Kiev: Naukova dumka, 1981. - 496 s.
30. Islinskij A.U., Ivlev D.D. Matematiceskaa teoria plasticnosti. - M.: Fizmatlit, 2001. - 704 s.
31. Prandtl L. Spunnungsverteilung in plastischen Korpern // Proc. 1st Int. Congress of Applied Mechanics, 22-26 April, Delft, the Netherlands, 1924. - S. 43-54.
32. Reuss A. Berucksichtigung der elastischen Formanderung in der Plastizitatstheorie // ZAMM. - 1930. - Vol. 10, no. 2. - P. 266-274. DOI
33. Odkvist F.K.G. Mathematical theory of creep and creep rupture. - Stockholm: Darendon Press, 1966. - 170 p.
34. Trusdell K. Pervonacal’nyj kurs racional’noj mehaniki splosnyh sred. - M.: Mir, 1975. - 592 s.
35. Levitas V.I. Bol’sie uprugoplasticeskie deformacii materialov pri vysokom davlenii. - Kiev: Naukova dumka, 1987. - 232 s.
36. Szabo L., Balla M. Comparison of some stress rates // Int. J. Solids Struct. - 1989. - Vol. 25, no. 3. - P. 279-297. DOI
37. Sedov L.I. Mehanika splosnoj sredy. - M.: Nauka, 1970. - T. 1. - 492 s.
38. Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E. Convergence properties of the Nelder-Mead simplex method in low dimensions // SIAM J. Optim. - 1998. - Vol. 9, no. 1. - P. 112-147. DOI

Published

2014-06-24

Issue

Section

Articles

How to Cite

Garishin, O. K., Korlyakov, A. S., & Shadrin, V. V. (2014). Study of visco-elastic-plastic properties of thermoplastic polymers. An integrated experimental and theoretical approach. Computational Continuum Mechanics, 7(2), 208-218. https://doi.org/10.7242/1999-6691/2014.7.2.21