Numerical methods for solving the problem of polymer crystallizing media deformation taking into account finite deformations

Authors

  • Roman Georgievich Kulikov Perm National Research Polytechnic University
  • Tatiana Georgievna Kulikova Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2014.7.2.18

Keywords:

numerical algorithm, finite element method, polymers, crystallization, finite deformations, nonlinear problem, linearization

Abstract

Methodology and numerical algorithm are developed for solving the boundary problems of elastic polymer crystallizing. A class of problems describing processes in polymer specimens in the course of their manufacturing is studied. Due to the significance of shrinking deformations, the problem is considered in the framework of the finite strain theory. Constitutive relations are derived using the Peng-Landel potential. A weak variational formulation based on Galerkin approach is considered. The proposed algorithm is based on linearization methodology when small deformations are applied to finite ones. The deformation process is represented as a sequence of transitions through intermediate configurations. This approach makes it possible to reduce the solution to a sequence of linearized problems for which effective numerical algorithms have been designed. A numerical technique is based on the finite element method. Displacement increments at the considered time step are taken to be nodal unknowns. The algorithm was applied to solve the problem of deformation of a polyethylene pipe during its manufacturing. The problem was considered in an axisymmetric formulation. The temperature dependence of material characteristics was taken into account. The solution of coupled temperature - conversional problem was obtained with finite difference methods. The linearized geometrical and constitutive relations were defined. Distributions of displacement, radial and circular stresses fields were obtained. The main advantages of the proposed algorithm are formulated.

Downloads

Download data is not yet available.

References

Begisev V.P., Matveenko V.P., Piscov N.V., Sardakov I.N. Modelirovanie termomehaniceskih processov v kristallizuusemsa polimere // MTT. - 1997. - No 4. - S. 120-132. DOI
2. Sardakov I.N., Golotina L.A. Modelirovanie deformacionnyh processov v amorfno-kristalliceskih polimerah // Vycisl. meh. splos. sred. - 2009. - T. 2, No 3. - S. 106-113. DOI
3. Zav’alova T.G., Trufanov N.A. Opredelausie sootnosenia dla vazkouprugogo tela v usloviah kristallizacii // PMTF. - 2005. - T. 46, No 4. - S. 78-87. DOI
4. Kulikova T.G., Trufanov N.A. Cislennoe resenie kraevoj zadaci termomehaniki dla kristallizuusegosa vazkouprugogo polimera // Vycisl. meh. splos. sred. - 2008. - T. 1, No 2. - S. 38-52. DOI
5. Malkin A.A., Begisev V.P. Himiceskoe formovanie polimerov. - M.: Himia, 1991. - 540 s.
6. Anand L., Ames L.M., Srivastava V., Chester S.A. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation // Int. J. Plasticity. - 2009. - Vol. 25, no. 8. - P. 1474-1494. DOI
7. Dupaix R.B., Boyce M.C. Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition // Mech. Mater. - 2007. - Vol. 39, no. 1. - P. 39-52. DOI
8. Rogovoj A.A. Opredelausie sootnosenia dla konecnyh uprugo-neuprugih deformacij // PMTF. - 2005. - T. 46, No 5. - S. 138-149. DOI
9. Kulikov R.G., Zvagin A.A. Ispol’zovanie parallel’nyh vycislitel’nyh tehnologij pri resenii zadaci odnoosnogo deformirovania v ramkah nelinejnoj teorii uprugosti // Naucno-tehniceskij vestnik Povolz’a. - 2013. - No 2. - S. 27-31.
10. Kulikova T.G. K opisaniu deformirovania kristallizuusegosa polimernogo materiala s ucetom bol’sih deformacij // Vestnik Permskogo gosudarstvennogo tehniceskogo universiteta. Mehanika. - 2010. - No 3. - S. 67-85.
11. Kulikova T.G., Trufanov N.A. Opredelausie sootnosenia dla kristallizuusegosa polimernogo materiala i posagovaa procedura resenia s ucetom konecnyh deformacij // Vycislitel’naa mehanika: Sbornik naucnyh trudov. - 2008. - No 7. - S. 170-178.
12. Adamov A.A., Matveenko V.P., Trufanov N.A., Sardakov I.N. Metody prikladnoj vazkouprugosti. - Ekaterinburg: UrO RAN, 2003. - 411 s.
13. Lur’e A.I. Nelinejnaa teoria uprugosti. - M.: Nauka, 1970. - 940 s.
14. Kulikov R.G., Kulikova T.G. K voprosu opredelenia deformirovannogo sostoania kristallizuusejsa polimernoj sredy s ucetom bol’sih deformacij // Vestnik PNIPU. Mehanika. - 2012. - No 1. - S. 62-72.
15. Srivastava V., Chester S.A., Anand L. Thermally actuated shape-memory polymers: Experiments, theory and numerical simulations // J. Mech. Phys. Solids. - 2010. - Vol. 58, no. 8. - P. 1100-1124. DOI
16. Adamov A.A. Issledovanie i modelirovanie nestacionarnogo termomehaniceskogo povedenia vazkouprugih rezinopodobnyh materialov i elementov konstrukcij pri konecnyh deformaciah // Dis. ... d-ra fiz.-mat. nauk: 01.02.04. - Perm’, IMSS UrO RAN, 2004. - 303 c.
17. Rogovoy A.A. Formalized approach to construction of the state equations for complex media under finite deformations // Continuum Mech. Therm. - 2012. - Vol. 24, no. 2. - P. 81-114. DOI
18. Zenkevic O. Metod konecnyh elementov v tehnike. - M.: Mir, 1975. - 542 s.
19. Teplofiziceskie i reologiceskie harakteristiki polimerov: Spravocnik / Pod red. U.S. Lipatova - Kiev: Naukova dumka, 1977. - 244 s.
20. Piven’ A.N., Grecanaa N.A., Cernobyl’skij I.I. Teplofiziceskie svojstva polimernyh materialov. - Kiev: Visa skola, 1976. - 180 s.
21. Nil’sen L. Mehaniceskie svojstva polimerov i polimernyh kompozicij. - M.: Himia, 1978. - 312 s.

Published

2014-06-24

Issue

Section

Articles

How to Cite

Kulikov, R. G., & Kulikova, T. G. (2014). Numerical methods for solving the problem of polymer crystallizing media deformation taking into account finite deformations. Computational Continuum Mechanics, 7(2), 172-180. https://doi.org/10.7242/1999-6691/2014.7.2.18