Behavior of a cylindrical bubble under vibrations
DOI:
https://doi.org/10.7242/1999-6691/2014.7.2.16Keywords:
cylindrical gas bubble, contact line dynamics, forced oscillations, eigen oscillationsAbstract
Eigen and forced vibrations of a cylindrical gas bubble surrounded by an incompressible fluid with a free non-deformable external interface are investigated. The bubble is bounded by two parallel solid planes. The system is subjected to an external vibration field. The contact line dynamics is taken into account by an effective boundary condition, and the contact line velocity is assumed to be proportional to deviation of the contact angle from the equilibrium value. The coefficient of proportionality, so-called wetting parameter (Hocking’s constant), characterizes the properties of the fluid and the substrate material. The equilibrium contact angle is right. An axially symmetric mode of eigen oscillations is studied; the dependence of frequencies and decrements on problem parameters is investigated. It has been found that for the main even mode of eigen oscillations (which describes the radial compression of the bubble) the frequency of eigen oscillations can vanish in some wetting parameter interval. The length of this interval increases with increasing ratio of the equilibrium bubble radius to the height. The eigen frequencies of other modes decrease with increasing Hocking’s constant. The lowest natural frequency is observed for the freely sliding bubble. The existence of «anti-resonance» frequencies is demonstrated, i.e. the values of external frequencies when the bubble interface does not deviate from the equilibrium value.
Downloads
References
De Zen P.Z. Smacivanie: statika i dinamika // UFN. - 1987. - T. 151, No 4. - S. 619-681. DOI
2. Daniel S., Chaudhury M.K., de Gennes P.-G. Vibration-actuated drop motion on surfaces for batch microfluidic processes // Langmuir. - 2005. - V. 21, no. 9. - P. 4240-4248. DOI
3. Mettu S, Chaudhury M.K. Vibration spectroscopy of a sessile drop and its contact line // Langmuir. - 2012. - V. 28, no. 39. - P. 14100-14106. DOI
4. Noblin X., Buguin A., Brochard-Wyart F. Vibrated sessile drops: Transition between pinned and mobile contact line oscillations // Eur. Phys. J. E. - 2004. - V. 14, no. 4. - P. 395-404. DOI
5. Lubimov D.V., Lubimova T.P., Sklaev S.V. Neosesimmetricnye kolebania polusfericeskoj kapli // MZG. - 2004. - No 6. - S. 8-20. DOI
6. Mugele F., Baret J.-C. Electrowetting: from basics to applications // J. Phys.: Condens. Matter. - 2005. - V. 17, no. 28, pp. 705-774. DOI
7. Oh J.M., Ko S.H., Kang K.H. Shape oscillation of a drop in ac electrowetting // Langmuir. - 2008. - V. 24, no. 15. - P. 8379-8386. DOI
8. Chen J., Yu Y., Li J., Lai Y., Zhou J. Size-variable droplet actuation by interdigitated electrowetting electrode // Appl. Phys. Lett. - 2012. - V. 101. - 234102. DOI
9. Goohpattader P.S., Mettu S., Chaudhury M.K. Stochastic rolling of a rigid sphere in weak adhesive contact with a soft substrate // Eur. Phys. J. E. - 2011. - V. 34, no. 11. - P. 120. DOI
10. Luo M., Gupta R., Frechette J. Modulating contact angle hysteresis to direct fluid droplets along a homogenous surface // ACS Appl. Mater. Interfaces. - 2012. - V. 4, no. 2. - P. 890-896. DOI
11. Bostwick J.B., Steen P.H. Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions // J. Fluid Mech. - 2013. - V. 714. - P. 312-335. DOI
12. Bostwick J.B., Steen P.H. Coupled oscillations of deformable spherical-cap droplets. Part 2. Viscous motions // J. Fluid Mech. - 2013. - V. 714. - P. 336-360. DOI
13. Oron A., Davis S.H., Bankoff S.G. Long-scale evolution of thin liquid films // Rev. Mod. Phys. - 1997. - V. 69. - P. 931-980. DOI
14. Craster R.V., Matar O.K. Dynamics and stability of thin liquid films // Rev. Mod. Phys. - 2009. - V. 81. - P. 1131-1198. DOI
15. Shklyaev S., Khenner M., Alabuzhev A.A. Enhanced stability of a dewetting thin liquid film in a single-frequency vibration field // Phys. Rev. E. - 2008. - V. 77. - 036320. DOI
16. Hocking L.M. The damping of capillary-gravity waves at a rigid boundary // J. Fluid Mech. - 1987. - V. 179. - P. 253-266. DOI
17. Shklyaev S., Straube A.V. Linear oscillations of a compressible hemispherical bubble on a solid substrate // Phys. Fluids. - 2008. - V. 20. - 052102. DOI
18. Fayzrakhmanova I.S., Straube A.V., Shklyaev S. Bubble dynamics atop an oscillating substrate: Interplay of compressibility and contact angle hysteresis // Phys. Fluids. - 2011. - V. 23. - 102105. DOI
19. Hocking L.M. Waves produced by a vertically oscillating plate // J. Fluid Mech. - 1987. - V. 179. - P. 267-281. DOI
20. Lyubimov D.V., Lyubimova T P., Shklyaev S.V. Behavior of a drop on an oscillating solid plate // Phys. Fluids. - 2006. - V. 18. - 012101. DOI
21. Fayzrakhmanova I.S., Straube A.V. Stick-slip dynamics of an oscillated sessile drop // Phys. Fluids. - 2009. - V. 21. - 072104. DOI
22. Ivancov A.O. Akusticeskie kolebania polusfericeskoj kapli // Vestnik PGU. Seria: Fizika. - 2012. - No 3. - S. 16-23.
23. Alabuzev A.A., Lubimov D.V. Vlianie dinamiki kontaktnoj linii na sobstvennye kolebania cilindriceskoj kapli // PMTF. - 2007. - T. 48, No 5. - S. 78-86. DOI
24. Alabuzev A.A., Lubimov D.V. Vlianie dinamiki kontaktnoj linii na kolebania szatoj kapli // PMTF. - 2012. - T. 53, No 1. - S. 12-23. DOI
25. Landau L.D., Lifsic E.M. Teoreticeskaa fizika: Gidrodinamika. - M.: Fizmatlit, 2001. - T. 6. - 736 s.
26. Lifsic E.M., Pitaevskij L.P. Teoreticeskaa fizika: Fiziceskaa kinetika. - M.: Fizmatlit, 2007. - T. 10. - 536 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.