Numerical calculation of the optimum shape of a body of revolution moving at steady speed in the soil environment
DOI:
https://doi.org/10.7242/1999-6691/2014.7.2.15Keywords:
soil media, dynamic penetration, body of revolution, minimal drag, local interaction model, parametric optimization, method of local variationsAbstract
The problem of determining the optimum shape of a body of revolution with minimum drag penetrating into the soil is solved numerically by using a modified version of the method of local variations and a quadratic trinomial local interaction model. Good agreement has been reached between the results for the generatrix of a body of revolution in the form of a parametric Bezier polynomial and a piecewise linear curve. Convergence of successive approximation methods for the solution of a parametric optimization problem is studied. An error made in determining the drag force as a function of variations in the generatrix parameters is considered. The difference in drag forces between the bodies of absolutely optimal shapes and the bodies of calculated optimal shapes is analyzed for different body length and various strength characteristics of the medium. It is shown that the approximation of the body generatrix by the Bezier polynomial previously used only in the problems of aerodynamics can be successfully applied to parameterization of the generatrix of a body penetrating into the soil. The proposed algorithm can be generalized to calculate the drag force in the framework of continuum mechanics.
Downloads
References
Aptukov V.N., Pozdeev A.A. Nekotorye minimaksnye zadaci tehnologii i procnosti konstrukcij // Izv. AN SSSR. Tehniceskaa kibernetika. - 1982. - No 1. - S. 47-55.
2. Aptukov V.N., Petruhin G.I., Pozdeev A.A. Optimal’noe tormozenie tverdogo tela neodnorodnoj plastinoj pri udare po normali // MTT. - 1985. - No 1. - S. 165-170.
3. Bunimovic A.I., Akunina G.E. O forme tel vrasenia minimal’nogo soprotivlenia, dvizusihsa v plasticeski szimaemyh i uprugoplasticeskih sredah // PMM. - 1987. - T. 51, No 3. - S. 496-503. DOI
4. Ben-Dor G., Dubinsky A., Elperin T. Ballistic impact: Recent advances in analytical modeling of plate penetration dynamics - A review // Appl. Mech. Rev. - 2005. - Vol. 58, no. 6. - P. 355-371. DOI
5. Ben-Dor G., Dubinsky A., Elperin T. Shape optimization of high-speed penetrators: a review // Central European Journal of Engineering. - 2012. - Vol. 2, no. 4. - P. 473-482. DOI
6. Ostapenko N.A., Akunina G.E. O telah naimen’sego soprotivlenia, dvigausihsa v sredah pri nalicii zakona lokal’nosti // MZG. - 1992. - No 1. - S. 95-106.
7. Ostapenko N.A. Tela vrasenia minimal’nogo soprotivlenia pri dvizenii v plotnyh sredah // Uspehi mehaniki. - 2002. - No 2. - S. 105-149. DOI
8. Akunina G.E. K postroeniu optimal’nyh prostranstvennyh form v ramkah modeli lokal’nogo vzaimodejstvia // PMM. - 2000. - T. 64, No 2. - S. 299-309. DOI
9. Akunina G.E. Optimal’nye formy dvizusihsa v srede tel pri ucete trenia // PMM. - 2005. - T. 69, No 5. - S. 759-774. DOI
10. Banicuk N.V., Ivanova S.U. Optimizacia formy zestkogo tela, vnedrausegosa v splosnuu sredu // Problemy procnosti i plasticnosti. - 2007. - T. 69. - S. 47-58.
11. Banicuk N.V., Ivanova S.U., Makeev E.V. O pronikanii neosesimmetricnyh tel v tverduu deformiruemuu sredu i optimizacia ih formy // MTT. - 2008. - No 4. - S. 176-183. DOI
12. Ben-Dor G., Dubinsky A., Elperin T. Localized interaction models with non-constant friction for rigid penetrating impactors // Int. J. Solids Struct. - 2007. - Vol. 44, no. 7-8. - P. 2593-2607. DOI
13. Ben-Dor G., Dubinsky A., Elperin T. Shape optimization of impactors against a finite width shield using a modified method of local variations // Mech. Based Des. Struc. - 2007. - Vol. 35, no. 2. - P. 113-125. DOI
14. Ben-Dor G., Dubinsky A., Elperin T. Modification of the method of local variations for shape optimization of penetrating impactors using the localized impactor/shield interaction models // Mech. Based Des. Struc. - 2007. - Vol. 35, no. 1. - P. 1-14. DOI
15. Bazenov V.G., Kotov V.L., Linnik E.U. O modelah rasceta form osesimmetricnyh tel minimal’nogo soprotivlenia pri dvizenii v gruntovyh sredah // DAN. - 2013. - T. 449, No 2. - S. 156-159. DOI
16. Bazenov V.G., Balandin V.V., Grigoran S.S., Kotov V.L. Analiz modelej rasceta dvizenia tel vrasenia minimal’nogo soprotivlenia v gruntovyh sredah // PMM. - 2014. - T. 78, No 1. - S. 98-115.
17. Kotov V.L., Balandin Vl.V., Linnik E.U., Balandin Vl.Vl. O primenimosti modeli lokal’nogo vzaimodejstvia dla opredelenia sil soprotivlenia vnedreniu sfery v nelinejno-szimaemyj grunt // Vycisl. meh. splos. sred. - 2012. - T. 5, No 4. - S. 435-442. DOI
18. Kotov V.L., Balandin V.V., Bragov A.M., Linnik E.U., Balandin V.V. Primenenie modeli lokal’nogo vzaimodejstvia dla opredelenia sily soprotivlenia vnedreniu udarnikov v pescanyj grunt // PMTF. - 2013. - T. 54, No 4. - S. 114-125. DOI
19. Aptukov V.N. Rassirenie sfericeskoj polosti v uprugoplasticeskoj srede pri konecnyh deformaciah. Soobsenie 1. Vlianie mehaniceskih harakteristik, svobodnoj poverhnosti, slojnosti // Problemy procnosti. - 1991. - No 12. - S. 7-10.
20. Aptukov V.N. Rassirenie sfericeskoj polosti v uprugoplasticeskoj srede pri konecnyh deformaciah. Soobsenie 2. Vlianie inercionnyh harakteristik. Temperaturnye effekty // Problemy procnosti. - 1991. - No 12. - S. 11-14.
21. Kotov V.L., Linnik E.U., Makarova A.A., Tarasova A.A. Analiz priblizennyh resenij zadaci o rassirenii sfericeskoj polosti v gruntovoj srede // Problemy procnosti i plasticnosti. - 2011. - T. 73. - S. 58-63.
22. Linnik E.U., Kotov V.L., Tarasova A.A., Gonik E.G. Resenie zadaci o rassirenii sfericeskoj polosti v predpolozenii neszimaemosti za frontom udarnoj volny // Problemy procnosti i plasticnosti. - 2012. - T. 74. - S. 49-58.
23. Linnik E.U. Cislennoe issledovanie volnovogo mehanizma formirovania sily soprotivlenia vnedreniu tel vrasenia v gruntovye sredy // Vestnik Nizegorodskogo universiteta im. N.I. Lobacevskogo. Seria: Mehanika. - 2013. - No 1(1). - S. 164-169.
24. Cernous’ko F.L. Metod lokal’nyh variacij dla cislennogo resenia variacionnyh zadac // ZVMMF. - 1965. - T. 5, No 4. - S. 749-754.
25. Cernous’ko F.L., Banicuk N.V. Variacionnye zadaci mehaniki i upravlenia: Cislennye metody. - M.: Nauka, 1973. - 238 s.
26. Ostapenko N.A., Romancenko V.I., Akunina G.E. Optimal’nye formy prostranstvennyh tel s maksimal’noj glubinoj pronikania v plotnye sredy // PMTF. - 1994. - No 4. - S. 32-40. DOI
27. Kotov V.L., Linnik E.U. Cislennyj rascet formy tela vrasenia minimal’nogo soprotivlenia dvizeniu v gruntovoj srede v ramkah modeli lokal’nogo vzaimodejstvia // Problemy procnosti i plasticnosti. - T. 75, No 4. - 2013. - S. 296-302.
28. Krajko A.A., P’ankov K.S. Effektivnye pramye metody v zadacah postroenia optimal’nyh aerodinamiceskih form // ZVMMF. - 2010. - T. 50, No 9. - S. 1624-1631. DOI
29. Aptukov V.N., Il’usenko P.N., Fonarev A.V. Modelirovanie tresinoobrazovania v materialah pod dejstviem vzryvnyh nagruzok // Vycisl. meh. splos. sred. - 2010. - T. 3, No 1. - S. 5-12. DOI
30. Balandin V.V., Bragov A.M., Krylov S.V., Cvetkova E.V. Eksperimental’no-teoreticeskoe izucenie processov pronikania sferokoniceskih tel v pescanuu pregradu // Vycisl. meh. splos. sred. - 2010. - T. 3, No 2. - S. 15-23. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.