Numerical modeling of viscoelastic behavior of filled rubber vulcanizates

Authors

  • Vladislav Nikolaevich Solodko Perm State University
  • Aleksandr Lvovich Svistkov Institute of Continuous Media Mechanics UB RAS
  • Aleksandr Gennadievich Pelevin Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2014.7.2.12

Keywords:

viscoelasticity, finite deformations, two-scale structural-phenomenological model, elastomer, filler, filled rubber vulcanizates

Abstract

The paper focuses on the numerical implementation of constitutive relations of a continuum viscoelastic model, which describes the behavior of filled rubber vulcanizates under finite deformations. In the model, the additive decomposition of the strain rate tensor and the concept of macro and structural levels of deformation are used. The equilibrium hyperelastic behavior of a polymer binder is represented by relations that are based on the generalized tube model. Rheological properties are represented as differential relations. Various types of a term in the expression for free energy potential responsible for relaxation properties are tested. The viscous flow coefficient is analyzed as a function of continuum parameters and internal tensor variables. Simulation results are compared with the experimental data for filled rubber vulcanizates under uniaxial cyclic loading.

Downloads

Download data is not yet available.

References

Bergstrom J.S., Boyce M.C. Constitutive modeling of the large strain time-dependent behavior of elastomers // J. Mech. Phys. Solids. - 1998. - Vol. 46, no. 5. - P. 931-954. DOI
2. Huber N., Tsakmakis C. Finite deformation viscoelasticity laws // Mech. Mater. - 2000. - Vol. 32, no. 1. - P. 1-18. DOI
3. Bonet J. Large strain viscoelastic constitutive models // Int. J. Solids Struct. - 2001. - Vol. 38, no. 17. - P. 2953-2968. DOI
4. Amin A.F.M.S., Lion A., Sekita S., Okui Y. Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification // Int. J. Plasticity. - 2006. - Vol. 22, no. 9. - P. 1610-1657. DOI
5. Hoo Fatt M.S., Ouyang X. Three-dimensional constitutive equations for Styrene Butadiene Rubber at high strain rates // Mech. Mater. - 2008. - Vol. 40, no. 1-2. - P. 1-16. DOI
6. Laiarinandrasana L., Piques R., Robisson A. Visco-hyperelastic model with internal state variable coupled with discontinuous damage concept under total Lagrangian formulation // Int. J. Plasticity. - 2003. - Vol. 19, no. 7. - P. 977-1000. DOI
7. Haupt P., Sedlan K. Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling // Arch. Appl. Mech. - 2001. - Vol. 71, no. 2-3. - P. 89-109. DOI
8. Palmov V.A. Comparison of different approaches in viscoelastoplasticity for large strains // ZAMM - J. Appl. Math. Mech. - 2000. - Vol. 80, no. 11-12. - P. 801-806. DOI
9. Svistkov A.L., Lauke B. Differencial’nye opredelausie uravnenia neszimaemyh sred pri konecnyh deformaciah // PMTF. - 2009. - T. 50, No 3. - S. 158-170. DOI
10. Marvalova B. Viscoelastic properties of filled rubber. Experimental observations and material modelling // Eng. Mech. - 2007. - Vol. 14, no. 1-2. - P. 81-89.
11. Lion A. A constitutive model for carbon black filled rubber: Experimental investigations and mathematical representation // Continuum Mech. Therm. - 1996. - Vol. 8, no. 3. - P. 153-169. DOI
12. Miehe C., Keck J. Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation // J. Mech. Phys. Solids. - 2000. - Vol. 48, no. 2. - P. 323-365. DOI
13. Kaliske M., Heinrich G. An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation // Rubber Chem. Technol. - 1999. - Vol. 72, no. 4. - P. 602-632. DOI
14. Svistkov A.L., Pelevin A.G., Shadrin V.V., Stockelhuber K.W. Modelling of the mechanical properties of rubber compounds using a two-level structural-phenomenological model // Constitutive Models for Rubber VIII / Ed. by N. Gil-Negrete, A. Alonso. - Taylor & Francis Group, 2013. - P. 101-106.

Published

2014-06-24

Issue

Section

Articles

How to Cite

Solodko, V. N., Svistkov, A. L., & Pelevin, A. G. (2014). Numerical modeling of viscoelastic behavior of filled rubber vulcanizates. Computational Continuum Mechanics, 7(2), 115-121. https://doi.org/10.7242/1999-6691/2014.7.2.12