Simulation of elastic wave diffraction by multiple strip-like cracks in layered periodic composite
DOI:
https://doi.org/10.7242/1999-6691/2015.8.2.11Keywords:
phononic crystal, crack, elastic waves, composite, resonance, localizationAbstract
Numerical modeling of the harmonic motion of a layered phononic crystal (elastic periodic composite) with a set of co-planar strip-like cracks and the accompanying wave phenomena are studied. To simulate an incident field, a transfer matrix method is used. This method allows one to calculate wave-fields and to estimate band gaps and localization factor. The wave-field scattered by a set of strip-like cracks is a superposition of the wave-fields scattered by each crack. All the scattered wave-fields have integral representations in the form of convolution of Fourier symbols of Green’s matrix of the corresponding layered structures and the Fourier transform of crack opening displacements. Crack opening displacements are calculated by applying the Bubnov-Galerkin scheme along with the boundary integral equation method. To solve the system of integral equations, Chebyshev polynomials of the second kind are used because they take into account the square root behaviour of crack opening displacement. The system of linear algebraic equations arising after discretization is composed of matrices describing interactions between cracks. Wave characteristics that allow describing wave phenomena related to elastic wave diffraction by a set of cracks are analysed, and corresponding examples are given. Resonance scattering by a system of cracks depending on the defect situation is investigated, the streamlines of wave energy flows are constructed, and the results are discussed.
Downloads
References
Lu M.-H., Feng L., Chen Y.-F. Phononic crystals and acoustic metamaterials // Materials Today. - 2009. - Vol. 12, no. 12. - P. 34-42. DOI
2. Acoustic metamaterials and phononic crystals / Ed. by P.A. Deymier. - Berlin: Springer, 2013. - 378 p. DOI
3. Nikitov S.A., Grigor’evskij A.V., Grigor’evskij V.I., Kotelanskij I.M., Luzanov V.A., Mirgorodskaa E.N., Suckov S.G. Osobennosti rasprostranenia poverhnostnyh akusticeskih voln v dvumernyh fononnyh kristallah na poverhnosti kristalla niobata litia // Radiotehnika i elektronika. - 2011. - T. 56, No 7. - S. 876-888.
4. Zubtsov M., Lucklum R., Ke M., Oseev A., Grundmann R., Henning B., Hempel U. 2D phononic crystal sensor with normal incidence of sound // Sensors Actuat. A-Phys. - 2012. - Vol. 186. - P. 118-124. DOI
5. Golub M.V., Fomenko S.I., Bui T.Q., Zhang Ch., Wang Y.-S. Transmission and band gaps of elastic SH waves in functionally graded periodic laminates // Int. J. Solids Struct. - 2012. - Vol. 49, no. 2. - P. 344-354. DOI
6. Schneider D., Liaqat F., El Boudouti H., El Abouti O., Tremel W., Butt H.-J., Djafari-Rouhani B., Fytas G. Defect-controlled hypersound propagation in hybrid superlattices // Phys. Rev. Lett. - 2013. - Vol. 111. - 164301. DOI
7. Yao Z.-J., Yu G.-L., Wang Y.-S., Shi Z.-F. Propagation of bending waves in phononic crystal thin plates with a point defect // Int. J. Solids Struct. - 2009. - Vol. 46, no. 13. - P. 2571-2576. DOI
8. Golub M.V., Zhang Ch. In-plane motion and resonance phenomena in a periodically layered composites with a crack // Wave Motion. - 2014. - Vol. 51, no. 2. - P. 308-322. DOI
9. Lan M., Wei P. Laminated piezoelectric phononic crystal with imperfect interfaces // J. Appl. Phys. - 2012. - Vol. 111. - 013505. DOI
10. Golub M.V., Zhang Ch., Wang Y.-S. SH-wave propagation and scattering in periodically layered composites with a damaged layer // J. Sound Vib. - 2012. - Vol. 331, no. 8. - P. 1829-1843. DOI
11. Glushkov E., Glushkova N., Eremin A. Forced wave propagation and energy distribution in anisotropic laminate composites // J. Acoust. Soc. Am. - 2011. - Vol. 129. - P. 2923-2934. DOI
12. Gluskov E.V., Gluskova N.V., Golub M.V., Zang C. Rezonansnoe blokirovanie begusih voln sistemoj tresin v uprugom sloe // Akusticeskij zurnal. - 2009. - T. 55, No 1. - S. 11-20. DOI
13. Glushkov E.V., Glushkova N.V. Blocking property of energy vortices in elastic waveguides // J. Acoust. Soc. Am. - 1997. - Vol. 102. - P. 1356-1360. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.