Simulation of turbulent flows using an algebraic Reynolds stress model with universal wall functions
DOI:
https://doi.org/10.7242/1999-6691/2014.7.1.5Keywords:
turbulent flows, Reynolds stress models, Reynolds stress tensor components, anisotropy, universal wall functions, boundary layerAbstract
The paper explores the application of an Explicit Algebraic Reynolds Stress Model (EARSM) to turbulent flow simulation using universal wall functions. With universal wall functions, friction coefficients and velocity derivatives on a solid wall can be predicted with good accuracy, but the correct application of these functions entails changes in the formulation of turbulence models. Despite the fact that the use of this approach has been well investigated for RANS turbulence models, the question of how to introduce these functions in the EARSM has not been adequately addressed. A detailed consideration shows that in the case of EARSM, application of a coarser near-wall resolution leads to an unsatisfactory accuracy of the Reynolds stress gradient in the areas of rapid change in the velocity field and, as a consequence, to the oscillations of physical quantities in the boundary layer . The present paper proposes a method for eliminating these oscillations modified by calculating the velocity gradients on the inner faces of computational grid cells. A numerical implementation algorithm for the EARSM model which provides stable computation in the interface and acceptable simulation results on arbitrary unstructured grids with various level of grid-spacing near the rigid surface is presented. The effectiveness of the proposed algorithm is illustrated by solving the problem of turbulent flow over a flat plate. The results show that the algorithm is able to eliminate the spatial oscillations in velocity inside the boundary layer at any type of a grid. The analysis of two problems considering the asymmetrical flow indicates that the application of the developed EARSM algorithm gives a noticeable improvement of simulation results compared with the basic RANS model even in the case of the unstructured grid with arbitrary grid-spacing near the rigid surface.
Downloads
References
Rouc P. Vycislitel’naa gidrodinamika. - M.: Mir, 1980. - 618 s.
2. Volkov K.N., Emel’anov V.N. Modelirovanie krupnyh vihrej v rascetah turbulentnyh tecenij. - M.: Fizmatlit, 2008. - 364 c.
3. Belov I.A., Isaev S.A. Modelirovanie turbulentnyh tecenij: Uceb. posobie. - SPb.: Izd-vo BGTU, 2001. - 108 s.
4. Snegirev A.U. Vysokoproizvoditel’nye vycislenia v tehniceskoj fizike. Cislennoe modelirovanie turbulentnyh tecenij: Uceb. posobie - SPb.: Izd-vo Politehn. un-ta, 2009. - 143 s.
5. Wilcox D.C. Turbulence modeling for CFD. - La Canada, CA: DCW Industries, 1998. - 362 p.
6. Menter F.R., Garbaruk A.V., Egorov Y. Explicit algebraic Reynolds stress models for anisotropic wall-bounded flows // Proc. of 3rd European Conference for Aero-Space Sciences (EUCASS), Versailles, July 6-9th, 2009. - 14 p.
7. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J. - 1994. - V. 32, N. 8. - P. 1598-1605. DOI
8. Speziale C.G., Sarkar S., Gatski T.B. Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach // J. Fluid Mech. - 1991. - V. 227. - P. 245-272. DOI
9. Launder B.E., Reece G.J., Rodi W. Progress in the development of a Reynolds-stress turbulence closure // J. Fluid Mech. - 1975. - V. 68, N. 3. - P. 537-566. DOI
10. Wallin S., Johansson A.V. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows // J. Fluid Mech. - 2000. - V. 403. - P. 89-132. DOI
11. Hellsten A. New two-equation turbulence model for aerodynamics applications / Report A-21, PhD Dissertation. - Espoo, Finland: Helsinki University of Technology Laboratory of Aerodynamics, 2004.
12. Rodi W. A new algebraic relation for calculating the Reynolds stresses // Z. Angew. Math. Mech. - 1976. - V. 56. - P. 219-221.
13. Rodi W. The prediction of free turbulent boundary layers by use of a two-equation model of turbulence / PhD Dissertation in Mechanical Engineering. - London: Imperial College, 1972. - 310 p.
14. Jaramillo J.E., Perez-Segarra C.D., Oliva A., Claramunt K. Analysis of different RANS models applied to turbulent forced convection // Int. J. Heat Mass Tran. - 2007. - V. 50, N. 19-20. - P. 3749-3766. DOI
15. Louda P., Kozel K., Prihoda J., Benes L., Kopacek T. Numerical solution of incompressible flow through branched channels // Comput. Fluids. - 2011. - V. 46, N. 1. - P. 318-324. DOI
16. Benes L., Louda P., Kozel K., Keslerova R., Stigler J. Numerical simulations of flow through channels with T-junction // Appl. Math. Comput. - V. 219, N. 13. - P. 7225-7235. DOI
17. Jeyapaul E. Turbulent flow separation in 3-D asymmetric diffusers / NASA postdoctoral fellow. - Langley research center, 2010. - 69 p. (URL: http://hiroakinishikawa.com/niacfds/presentationfiles/Elbert_NIAtalk_11292011.pdf).
18. Launder B.E., Spalding D.B. The numerical computation of turbulent flows // Comput. Method. Appl. M. - 1974. - V. 3, N. 2. - P. 269-289. DOI
19. Menter F.R., Kuntz M., Langtry R. Ten years of experience with the SST turbulent model // Turbulence, Heat and Mass Transfer 4, ed. by K. Hanjalic, Y. Nagano, M. Tummers. - Begell House Inc., 2003. - 8 p. (URL: http://cfd.mace.manchester.ac.uk/flomania/pds_papers/file_pds-1068134610Menter-SST-paper.pdf).
20. Grotjans H., Menter F.R. Wall functions for industrial applications // Proc. of Computational Fluid Dynamics’98, ECCOMAS, ed. by K.D. Papailiou - U.K., Wiley: Chichester, 1998. - V. 1 (2). - P. 1112-1117.
21. Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows / Thesis submitted for the degree of doctor. - Department of Mechanical Engineering. - London: Imperial College, 1996. - 394 p.
22. Volkov K.N., Emel’anov V.N. Tecenia i teploobmen v kanalah i vrasausihsa polostah. - M.: Fizmatlit, 2010. - 488 c.
23. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J. - 1994. - V. 32, N. 8. - P. 1598-1605. DOI
24. Pogosan M.A., Savel’skih E.P., Strelec D.U., Kornev A.V. Otecestvennye superkomp’uternye tehnologii v aviacionnoj promyslennosti // Nauka i tehnologii v promyslennosti. - 2012. - No 2. - C. 26-35.
25. Pogosan M.A., Savel’skih E.P., Sagaliev R.M., Kozelkov A.S., Strelec D.U., Rabov A.A., Kornev A.V., Derugin U.N., Spiridonov V.F., Ciberev K.B. Primenenie otecestvennyh superkomp’uternyh tehnologij dla sozdania perspektivnyh obrazcov aviacionnoj tehniki // VANT. Seria: Matematiceskoe modelirovanie fiziceskih processov. - 2013. - No 2. - C. 3-18.
26. Wieghardt K., Tillmann W. On the turbulent friction layer for rising pressure / NACA TM 1314, 1951. - 46 p. (URL: http://www.grc.nasa.gov/WWW/wind/valid/fpturb/NACA-TM-1314-Wieghardt-1951.pdf).
27. Leonard B.P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation // Comput. Method. Appl. M. - 1979. - V. 19, N. 1. - P. 59-98. DOI
28. Raiesi H., Piomelli U., Pollard A. Evaluation of turbulence models using direct numerical and large-eddy simulation data // J. Fluids Eng. - 2011. - V. 133, N. 2. - 021203. DOI
29. Cherry E.M., Elkins C.J., Eaton J.K. Geometric sensitivity of three-dimensional separated flows // Int. J. Heat Fluid Fl. - 2008. - V. 29, N. 3. - P. 803-811. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.