Forces acting on a permanent magnet placed in a rectangular cavity with a magnetic fluid

Authors

  • Aleksandr Fedorovich Pshenichnikov Institute of Continuous Media Mechanics UB RAS
  • Ekaterina Nikolaevna Burkova Perm State University

DOI:

https://doi.org/10.7242/1999-6691/2014.7.1.1

Keywords:

magnetic fluid, permanent magnet, hydrostatic pressure, magnetophoresis, interparticle interactions

Abstract

A boundary value problem of forces acting on a permanent magnet placed in a rectangular cavity with concentrated magnetic fluid is solved by the control-volume method. The solutions available in the current literature have been obtained for dilute solutions, in which the inter-particle interactions (steric, magnetodipole and hydrodynamic) and magnetic fields generated by the magnetic fluid are inessential. Moreover, these studies neglect the magnetophoresis of colloidal particles and diffusion processes, which strongly restrict the applicability range of the obtained results. The inter-particle interactions can significantly increase the intensity of the fluid magnetization, and disregard of the magnetophoresis and particle diffusion implies that the known solutions are valid only over a limited time interval, which is short compared to the time of the onset of equilibrium particle distribution in the cavity. The main objective of this study is to estimate quantitatively the contributions of all these factors. The selected problem geometry corresponds to a simple uniaxial magnetofluidic accelerometer. The solution is searched for a two-dimensional problem using the dynamic equation of mass transfer recently introduced in J. Chem. Phys., 2011, vol. 134, 184508. The calculations have been performed to evaluate the magnetic field generated by the fluid and the field of colloidal particle concentration. The plots of the resultant force acting on the magnet versus its displacement from the equilibrium, the energy of magnetodipole interactions and volume-averaged particle concentration are presented. The basic finding of this work is the establishment of a very strong dependence of the computation results on the selection of an adequate theoretical model. In particular, it has been shown that disregard of inter-particle interactions in the fluid can lead to a computational error exceeding hundred percents.

Downloads

Download data is not yet available.

References

Rozencvejg R. Ferrogidrodinamika. - M.: Mir, 1989. - 356 s.
2. Naletova V.A., Skel’ I.A. Sila, dejstvuusaa na telo so storony magnitnoj zidkosti v neodnorodnom magnitnom pole // Magnitnaa gidrodinamika. - 1987. - T. 23, No 2. - S. 67-70.
3. Naletova V.A., Timonin G.A., Skel’ I.A. O sile, dejstvuusej na telo v neodnorodno nagretoj namagnicivausej zidkosti // MZG. - 1989. - No 2. - S. 76-83. DOI
4. Kvitancev A.S., Naletova V.A., Turkov V.A. Levitacia magnitov i tel iz magnitomagkih materialov v sosudah, zapolnennyh magnitnoj zidkost’u // MZG. - 2002. - No 3. - S. 12-20. DOI
5. Naletova V.A., Pelevina D.A., Turkov V.A. Statika magnitnoj zidkosti, soderzasej koncentratory magnitnogo pola // MZG. - 2009. - No 6. - S. 3-10. DOI
6. Pshenichnikov A.F., Lebedev A.V. Low-temperature susceptibility of concentrated magnetic fluids // J. Chem. Phys. - 2004. - Vol. 121, No. 11. - P. 5455-5467. DOI
7. Ivanov A.O., Kantorovich S.S., Reznikov E.N., Holm C., Pshenichnikov A.F., Lebedev A.V., Chremos A., Camp P.J. Magnetic measurements as a key for the particle size distribution in ferrofluids: experiment, theory and computer simulations // Magnetohydrodynamics. - 2007. - Vol. 43, No. 4. - P. 393-399.
8. Pshenichnikov A.F., Burkova E.N. Effect of demagnetizing fields on particle spatial distribution in magnetic fluids // Magnetohydrodynamics. - 2012. - Vol. 48, No. 3. - P. 503-514.
9. Psenicnikov A.F. Magnitnoe pole v okrestnosti uedinennogo magnita // Magnitnaa gidrodinamika. - 1993. - T. 29, No 1. - S. 37-40.
10. Pshenichnikov A.F. Computation of demagnetizing fields and particle distribution in magnetic fluid with inhomogeneous density // J. Magn. Magn. Mater. - 2012. - Vol. 324, No. 7. - P. 1342-1347. DOI
11. Ivanov A.O., Kuznetsova O.B. Magnetic properties of dense ferrofluids: An influence of interparticle correlations // Phys. Rev. E. - 2001. - Vol. 64, No. 4. - P. 041405. DOI
12. Psenicnikov A.F., Lebedev A.V. Magnitnaa vospriimcivost’ koncentrirovannyh ferrokolloidov // Kolloidnyj zurnal. - 2005. - T. 67, No 2. - S. 218-230.
13. Lukasevic M.V., Naletova V.A., Curikov S.N. Pereraspredelenie koncentracii magnitnoj zidkosti v neodnorodnom magnitnom pole // Magnitnaa gidrodinamika. - 1988. - T. 24, No 3. - S. 64-69.
14. Buevic U.A., Zubarev A.U., Ivanov A.O. Brounovskaa diffuzia v koncentrirovannyh ferrokolloidah // Magnitnaa gidrodinamika. - 1989. - T. 25, No 2. - S. 39-43.
15. Frishfelds V., Blums E. Microconvection and mass transfer near bodies in non-uniformly magnetized ferrofluid // Magnetohydrodynamics. - 2005. - Vol. 41, No. 4. - P. 361-366.
16. Bashtovoi V.G., Polevikov V.K., Suprun A.E., Stroots A.V., Beresnev S.A. Influence of Brownian diffusion on statics of magnetic fluid // Magnetohydrodynamics. - 2007. - Vol. 43, No. 1. - P. 17-25.
17. Drikis I., Cebers A. Pattern formation at magnetophoretical motion in the self-magnetic field of magnetic colloid // Magnetohydrodynamics. - 2011. - Vol. 47, No. 1. - P. 3-10.
18. Bacri J.-C., Cebers A., Bourdon A., Demouchy G., Heegaard B.M., Kashevsky B., Perzynski R. Transient grating in a ferrofluid under magnetic field: Effect of magnetic interactions on the diffusion coefficient of translation // Phys. Rev. E. - 1995. - Vol. 52, No. 4. - P. 3936-3942. DOI
19. Morozov K.I. Gradient diffusion in concentrated ferrocolloids under the influence of a magnetic field // Phys. Rev. E. - 1996. - Vol. 53, No. 4. - P. 3841-3846. DOI
20. Pshenichnikov A.F., Elfimova E.V., Ivanov A.O. Magnetophoresis, sedimentation and diffusion of particles in concentrated magnetic fluids // J. Chem. Phys. - 2011. - Vol. 134. - P. 184508. DOI
21. Ivanov A.O. Fazovoe rassloenie magnitnoj zidkosti / Diss... dokt. fiz.-mat. nauk: 01.04.14. - Ekaterinburg, UGTU, 1998. - 295 s.
22. Ivanov A.S., Pshenichnikov A.F. Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids // J. Magn. Magn. Mater. - 2010. - Vol. 322, No. 17. - P. 2575-2580. DOI
23. Bashtovoi V.G., Polevikov V.K., Suprun A.E., Stroots A.V., Beresnev S.A. The effect of magnetophoresis and Brownian diffusion on the levitation of bodies in a magnetic fluid // Magnetohydrodynamics. - 2008. - Vol. 44, No. 2. - P. 121-126.
24. Mamiya H., Nakatani I., Furubayashi T. Phase transitions of iron-nitride magnetic fluids // Phys. Rev. Lett. - 2000. - Vol. 84, No. 26. - P. 6106-6109. DOI
25. Pshenichnikov A.F., Mekhonoshin V.V. Equilibrium magnetization and microstructure of the system of superparamagnetic interacting particles: numerical simulation // J. Magn. Magn. Mater. - 2000. - Vol. 213, No. 3. - P. 357-369. DOI

Published

2014-03-31

Issue

Section

Articles

How to Cite

Pshenichnikov, A. F., & Burkova, E. N. (2014). Forces acting on a permanent magnet placed in a rectangular cavity with a magnetic fluid. Computational Continuum Mechanics, 7(1), 5-14. https://doi.org/10.7242/1999-6691/2014.7.1.1