A two-level model for description of steel behavior under thermomechanical loading in the range of martensitic transformations: algorithm for implementation of the model
DOI:
https://doi.org/10.7242/1999-6691/2013.6.4.54Keywords:
steels, martensitic transformations, two-level modelAbstract
A model is proposed to describe the behavior of steels under thermomechanical loading with account of martensitic transformations. To construct the model, a multilevel approach based on the use of internal variables in its structure – the parameters characterizing the state and evolution of meso- and microstructure of the material – has been applied. The coupled problem is reduced to the solution of three sub-problems: thermal conductivity, determination of the stress-strain state and estimation of the volume fractions of the coexisting phases. Different types of models have been developed and applied to these sub-problems. The paper presents a detailed algorithm for implementation of the model including all three sub-problems on two scale levels. As an example, a representative volume of the material under simple and complex loading conditions is considered at the macro-level. Numerical experiments have been performed to take into account temperature changes caused by plastic deformation and phase transformations.
Downloads
References
Loginova I., Agren J., Amberg G. On the formation of Widmanstaten ferrite in binary Fe-C-phase-field approach // Acta Mater. - 2004. - V. 52, N. 13. - P. 4055-4063. DOI
2. Steinbach I., Apel M. Multi-phase field model for solid state transformation with elastic strain // Physica D. - 2006. - V. 217, N. 2. - P. 153-160. DOI
3. Artemev A., Jin Y., Khachaturyan A.G. Three-dimensional phase field model and simulation of cubic → tetragonal martensitic transformation in polycrystals // Philos. Mag. A. - 2002. - V. 82, N. 6. - P. 1249-1270. DOI
4. Wang Y., Khachaturyan A.G. Three-dimensional field model and computer modeling of martensitic transformations // Acta Mater. - 1997. - V. 45, N. 2. - P. 759-773. DOI
5. Yamanaka A., Takaki T., Tomita Y., Yoshino M. Crystal plasticity phase-field simulation of deformation behavior and microstructure evolution in polycrystalline material // Proc. of X Int. Conf. on Computational Plasticity. COMPLAS X, Barselona, Spain, September 2-4, 2009. - P. 1-4.
6. Tjahjanto D.D., Turteltaub S., Suiker A.S.J. Crystallographically based model for transformation-induced plasticity in multiphase carbon steel // Continuum Mech. Therm. - 2008. - V. 19, N. 7. - P. 399-422. DOI
7. Turteltaub S., Suiker A.S.J. A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations // Int. J. Solids Struct. - 2005. - V. 43, N. 14-15. - P. 4509-4545. DOI
8. Yadegari S., Turteltaub S., Suiker A.S.J. Coupled thermomechanical analysis of transformation-induced plasticity in multiphase steels // Mech. Mater. - 2012. - V. 53. - P. 1-14. DOI
9. Lee M.-G., Kim S.-J., Han H.N. Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite // Int. J. Plasticity. - 2010. - V. 26, N. 5. - R. 688-710. DOI
10. Mahnten R., Schneidt A., Antretter T. Macro modeling and homogenization for transformation induced plasticity of a low-alloy steel // Int. J. Plasticity. - 2009. - V. 25, N. 2. - P. 183-204. DOI
11. De Oliveira W.P., Savi M.A., Pacheco P.M.C.L., de Souza L.F.G. Thermomechanical analysis of steel cylinders quenching using a constitutive model with diffusional and non-diffusional phase transformations // Mech. Mater. - 2010. - V. 42, N. 1. - P. 31-43. DOI
12. Trusov P.V., Asihmin V.N., Volegov P.S., Svejkin A.I. Opredelausie sootnosenia i ih primenenie dla opisania evolucii mikrostruktury // Fiz. mezomeh. - 2009. - T. 12, No 3. - S. 61-71.
13. Trusov P.V., Asihmin V.N., Svejkin A.I. Dvuhurovnevaa model’ uprugoplasticeskogo deformirovania polikristalliceskih materialov // Mehanika kompozicionnyh materialov i konstrukcij. - 2009. - T. 15, No 3. - S. 327-344.
14. Pozdeev A.A., Trusov P.V., Nasin U.I. Bol’sie uprugoplasticeskie deformacii: teoria, algoritmy, prilozenia. - M.: Nauka,1986. - 232 s.
15. Isupova I.L., Trusov P.V. Matematiceskoe modelirovanie fazovyh prevrasenij v stalah pri termomehaniceskoj nagruzke // Vestnik PNIPU. Mehanika. - 2013. - No 3. - S. 126-156.
16. Trusov P.V., Svejkin A.I. Mnogourovnevye fiziceskie modeli mono- i polikristallov. Statisticeskie modeli // Fiz. mezomeh. - 2011. - No 4. - S. 17-28.
17. Trusov P.V., Svejkin A.I. Mnogourovnevye fiziceskie modeli mono- i polikristallov. Pramye modeli // Fiz. mezomeh. - 2011. - T. 14, No 4. - S. 5-30.
18. Trusov P.V., Necaeva E.S., Svejkin A.I. Primenenie nesimmetricnyh mer naprazennogo i deformirovannogo sostoania pri postroenii mnogourovnevyh konstitutivnyh modelej materialov // Fiz. Mezomeh. - 2013. - T. 16, No 2. - S. 15-31.
19. Trusov P.V., Volegov P.S. Fiziceskie teorii plasticnosti: prilozenie k opisaniu uprocnenia v polikristallah // Vestnik Tambovskogo universiteta. Seria: Estestvennye i tehniceskie nauki. - 2010. - T. 15, No 3-1n. - S. 983-984.
20. Trusov P.V., Svejkin A.I., Necaeva E.S., Volegov P.S. Mnogourovnevye modeli neuprugogo deformirovania materialov i ih primenenie dla opisania evolucii vnutrennej struktury // Fiz. mezomeh. - 2012. - T. 15, No 1. - S. 33-56.
21. Ozdemir I., Brekelmans W.A.M., Geers M.G.D. Computational homogenization for heat conduction in heterogeneous solids // Int. J. Numer. Meth. Eng. - 2008. - V. 73, N. 2. - P. 185-204. DOI
22. Beese A.M. Experimental investigation and constitutive modeling of the large deformation behavior of anisotropic steel sheets undergoing strain-induced phase transformation / PhD Dissertation in Mechanical Engineering. - Massachusetts Institute of Technology, 2011. - 146 p.
23. Cho J.-Y. Finite element modeling of martensitic phase transformation / PhD Dissertation in Mechanical Engineering. - Texas Tech University, 2009. - 109 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.