Study of vorticity and helicity distribution in advective flow with secondary structures

Authors

  • Anna Valerievna Evgrafova Instutute of Continuous Media Mechanics UB RAS
  • Galina Vladimirovna Levina Institute of Space Research RAS
  • Andrey Nikolaevich Sukhanovskii Instutute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2013.6.4.49

Keywords:

vorticity, helicity, secondary flows, convection, Fluent

Abstract

The distribution of vorticity and helicity in a stationary cylindrical fluid layer locally heated at its center is studied numerically and experimentally. Such localized heating leads to the generation of a large-scale flow in the form of a toroidal convective cell. In the heating area, small-scale secondary flows and local upward jets appear. The goal of this study is to investigate helicity and vorticity structures produced by the interaction between the shear flow and the upward jets. Formation and evolution of vortex structures in the boundary layer of advective flows are considered in detail. It is shown that the interaction of convective jets with the advective flow does not give rise to substantial non-zero mean helicities and the vertical component of vorticity.

Downloads

Download data is not yet available.

References

Gersuni G.Z., Zuhovickij E.M. Ob ustojcivosti ploskoparallel’nogo konvektivnogo dvizenia otnositel’no prostranstvennyh vozmusenij // PMM. - 1969. - T. 33, No 5. - S. 855-860.
2. Sukhanovsky A., Batalov V., Teymurazov A., Frick P. Horizontal rolls in convective flow above a partially heated surface // Eur. Phys. J. B. - 2012. - V. 85, N. 1. - R. 1-12. DOI
3. Montgomery M.T., Nicholls M.E., Cram T.A., Saunders A.B. A vortical hot tower route to tropical cyclogenesis // J. Atmos. Sci. - 2006. - V. 63. - P. 355-386. DOI
4. Bogatyrev G.P. Vozbuzdenie cikloniceskogo vihra ili laboratornaa model’ tropiceskogo ciklona // Pis’ma v ZETF. - 1990. - T. 51, No 11. - S. 557-559.
5. Bogatyrev G.P., Popova E.V. Issledovanie pola skorosti v laboratornoj modeli tropiceskogo ciklona // Vestnik PGU. Fizika. - 1994. - No 2. - S. 141-150.
6. Bogatyrev G.P., Smorodin B.L. Fiziceskaa model’ vrasenia tropiceskogo ciklona // Pis’ma v ZETF. - 1996. - T. 63, No 1. - S. 25-28.
7. Bogatyrev G.P. Laboratornaa model’ tropiceskogo ciklona. - Perm’: Izdatel’ Bogatyrev P.G., 2009. - 96 s.
8. Navarro M.C., Herrero H. Vortex generation by a convective instability in a cylindrical annulus non-homogeneously heated // Physica D. - 2011. - V. 240, N. 14-15. - P. 1181-1188. DOI
9. Navarro M.C., Herrero H. Vortices in a cylindrical annulus nonhomogeneously heated: Effect of localized heating on their stability and intensity // Phys. Rev. E. - 2011. - V. 84, N. 3. - 037301. DOI
10. Moiseev S.S., Sagdeev R.Z., Tur A.V. i dr. Teoria vozniknovenia krupnomasstabnyh struktur v gidrodinamiceskoj turbulentnosti // ZETF. - 1983. - T. 85, No 6. - S. 1979-1987.
11. Berezin U.A., Zukov V.P. O vlianii vrasenia na konvektivnuu ustojcivost’ krupnomasstabnyh vozmusenij v turbulentnoj zidkosti // MZG. - 1989. - No 4. - S. 3-9.
12. Stepanov R.A., Frik P.G., Sestakov A.V. O spektral’nyh svojstvah spiral’noj turbulentnosti // MZG. - 2009. - No 5. - S. 33-44.
13. Sestakov A.V., Stepanov R.A., Frik P.G. Vlianie vrasenia na kaskadnye processy v spiral’noj turbulentnosti // Vycisl. meh. splos. sred. - 2012. - T. 5, No 2. - C. 193-198. DOI
14. Levina G.V., Montgomeri M.T. O pervom issledovanii spiral’noj prirody tropiceskogo ciklogeneza // DAN. - 2010. - T. 434, No 3. - S. 401-406.
15. Levina G.V., Montgomery M.T. Helical scenario of tropical cyclone genesis and intensification // J. Phys.: Conf. Ser. - 2011. - V. 318. - 072012. DOI
16. Levina G.V. Helical organization of tropical cyclones // Preprint NI13001-TOD. - Isaac Newton Institute for Mathematical Sciences. - UK, Cambridge, 2013. - 47 p. (URL: http://www.newton.ac.uk/preprints/NI13001.pdf).
17. Eidelman A., Elperin T., Gluzman I., Golbraikh E. Helicity of turbulent flow with coherent structures in Rayleigh-Benard convective cell // Abstracts of European Turbulence Conference 14, Lyon, France, 1-4 September, 2013.
18. Batalov V., Sukhanovsky A., Frick P. Laboratory study of differential rotation in a convective rotating layer // Geophys. Astro. Fluid. - 2010. - V. 104, N. 4. - P. 349-368. DOI
19. Raffel M., Willert C., Kompenhans J. Particle Image Velocimetry. A Practical Guide. - Berlin: Springer, 1998. - 253 p.
20. Suhanovskij A.N. Formirovanie differencial’nogo vrasenia v cilindriceskom sloe zidkosti // Vycisl. meh. splos. sred. - 2010. - T. 3, No 2. - S. 103-115. DOI
21. Sukhanovsky A.N. Formation of differential rotation in a cylindrical fluid layer // Fluid Dyn. - 2011. - V. 46, N. 1. - P. 158-168. DOI
22. Bol’suhin M.A., Vasil’ev A.U., Budnikov A.V. i dr. Ob eksperimental’nyh testah (bencmarkah) dla programmnyh paketov, obespecivausih rascet teploobmennikov v atomnoj energetike // Vycisl. meh. splos. sred. - 2012. - T. 5, No 4. - S. 469-480. DOI
23. Elsinga G.E., Scarano F., Wieneke B., van Oudheusden B.W. Tomographic particle image velocimetry // Experiments in Fluids. - 2006. - V. 41, N. 6. - P. 933-947. DOI
24. Bilsky A.V., Lozhkin V.A., Markovich D.M., Tokarev M.P. A maximum entropy reconstruction technique for tomographic particle image velocimetry // Meas. Sci. Technol. - 2013. - V. 24, N. 4. - 045301. DOI

Published

2013-12-29

Issue

Section

Articles

How to Cite

Evgrafova, A. V., Levina, G. V., & Sukhanovskii, A. N. (2013). Study of vorticity and helicity distribution in advective flow with secondary structures. Computational Continuum Mechanics, 6(4), 451-459. https://doi.org/10.7242/1999-6691/2013.6.4.49