Numerical solution of boundary-value problems for quasistatical flow of viscoplastic medium with negative strain rate sensitivity

Authors

  • Ilya Ernstovich Keller Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2013.6.4.48

Keywords:

viscoplasticity, negative strain rate sensitivity, complete integrability, boundary-value problems

Abstract

An integrable nonlinear viscoplastic model with metastable strain rate dependence is of interest for describing the spatial autowave processes in the active media. The procedure for integrating the Cauchy, Goursat and mixed boundary-value problems has been developed for nonlinear equations of quasistatical flow of these media in their hyperbolicity area. Each problem is decoupled into two non-interacted subproblems which are solved in parallel. These subproblems are solved numerically with the aid of the noniterative methods developed for perfectly plastic solids. The formulations of nonclassical boundary-value problems with free and interphase boundaries are discussed.

Downloads

Download data is not yet available.

References

Avtovolnovye processy v sistemah s diffuziej / Pod red. M.T. Grehovoj. - Gor’kij: Institut prikladnoj matematiki AN SSSR, 1981. - 287 s.
2. Vasil’ev V.A., Romanovskij U.M., Ahno V.G. Avtovolnovye processy. - M.: Nauka, 1987. - 240 s.
3. http://ru.wikipedia.org/wiki/Avtovolny (data obrasenia: 07.11.2013).
4. Rajesh S., Ananthakrishna G. Relaxation oscillations and negative strain rate sensitivity in the Portevin-Le Chatelier effect // Phys. Rev. E. - 2000. - V. 61, N 4. - P. 3664-3674. DOI
5. Rudskoj A.I, Rudaev A.I. Mehanika dinamiceskoj sverhplasticnosti aluminievyh splavov. - SPb.: Nauka, 2009. - 218 s.
6. Bazenov S.L., Koval’cuk E.P. Avtokolebatel’noe plasticeskoe deformirovanie polimerov // DAN. - 2007. - T. 417, No 3. - S. 353-356. DOI
7. Dieterich J.H. Modeling of rock friction: 1. Experimental results and constitutive equations // J. Geophys. Res. - Sol. Ea. - 1979. - V. 84, N. B5. - P. 2161-2168. DOI
8. Putelat T., Willis J.R., Dawes J.H.P. On the seismic cycle seen as a relaxation oscillation // Philos. Mag. - 2008. - V. 88, N. 28-29. - P. 3219-3243. DOI
9. Davidenkov N.N. Kinetika obrazovania zubcov na diagrammah deformacii // FTT. - 1961. - T. 3, No 8. - S. 2458-2465.
10. Penning P. Mathematics of the Portevin-Le Chatelier effect // Acta Metall. Mater. - 1972. - T. 20, N. 10. - S. 1169-1175. DOI
11. Keller I.E. Integriruemost’ uravnenij ravnovesia i sovmestnosti vazkoplasticeskoj sredy s otricatel’noj cuvstvitel’nost’u k skorosti deformacii // DAN. - 2013. - T. 451, No 6. - S. 643-646. DOI
12. Zbib H.M., Aifantis E.C. A gradient-dependent model for the Portevin-Le Chatelier effect // Scripta Metall. Mater. - 1988. - V. 22, N. 8. - P. 1331-1336. DOI
13. Jeanclaude V., Fressengeas C. Propagating pattern selection in the Portevin-Le Chatelier effect // Scripta Metall. Mater. - 1993. - V. 29, N. 9. - P. 1177-1182. DOI
14. Zaiser M., Haehner P. Oscillatory modes of plastic deformation: theoretical concepts // Phys. Stat. Sol. (B). - 1997. - V. 199. - P. 267-330.
15. Lebyodkin M., Dunin-Barkowskii L., Brechet Y., Estrin Y., Kubin L.P. Spatio-temporal dynamics of the Portevin-Le Chatelier effect: experiment and modelling // Acta Mater. - 2000. - V. 48, N. 10. - P. 2529-2541. DOI
16. Benallal A., Berstad T., Borvik T., Hopperstad O.S., Koutiri I., Nogueira de Codes R. An experimental and numerical investigation of the behaviour of AA5083 aluminium alloy in presence of the Portevin-Le Chatelier effect // Int. J. Plasticity. - 2008. - V. 24, N. 10. - P. 1916-1945. DOI
17. Il’usin A.A. Deformacia vazkoplasticeskogo tela // Uc. zapiski MGU. Mehanika. - 1940. - No 39. - S. 3-81.
18. Il’usin A.A., Pozdeev A.A., Tarnovskij I.A., Tarnovskij V.I. Metod gidrodinamiceskih priblizenij v zadacah plasticeskogo tecenia // Inzenernyj zurnal. - 1961. - T. 1, No 4. - S. 59-67.
19. Frejdental’ A., Gejringer H. Matematiceskie teorii neuprugoj splosnoj sredy. - M.: Fizmatgiz, 1962. - 432 s.
20. Rozdestvenskij B.L., Anenko N.N. Sistemy kvazilinejnyh uravnenij i ih prilozenia k gazovoj dinamike. - M.: Nauka, 1988. - 686 s.
21. Stepanov V.V. Kurs differencial’nyh uravnenij. - M.: Gostehizdat, 1950. - 473 s.
22. Rasevskij P.K. Geometriceskaa teoria uravnenij s castnymi proizvodnymi. - M.: Gostehizdat, 1947. - 354 s.
23. Petuhov D.S., Keller I.E. Issledovanie geometrii pfaffovoj sistemy uravnenij ravnovesia neszimaemoj vazkoplasticeskoj sredy // Vestnik PGU. Fizika. - 2012. - No 4 (22). - S. 161-164.
24. Ovsannikov L.V. Lekcii po osnovam gazovoj dinamiki. - M.-Izevsk: IKI, 2003. - 336 s.
25. Bogoyavlenskij O.I. Decoupling problem for systems of quasi-linear pde’s // Commun. Math. Phys. - 2007. - V. 269, N. 2. - P. 545-556. DOI
26. Hill R. Matematiceskaa teoria plasticnosti. - M.: Gostehizdat, 1956. - 408 s.
27. Trusdell K. Pervonacal’nyj kurs racional’noj mehaniki splosnyh sred. - M.: Mir, 1975. - 592 s.

Published

2013-12-29

Issue

Section

Articles

How to Cite

Keller, I. E. (2013). Numerical solution of boundary-value problems for quasistatical flow of viscoplastic medium with negative strain rate sensitivity. Computational Continuum Mechanics, 6(4), 438-450. https://doi.org/10.7242/1999-6691/2013.6.4.48