Computational modeling of failure of textile composites
DOI:
https://doi.org/10.7242/1999-6691/2013.6.4.43Keywords:
textile composites, carbon/epoxy composites, micro-destruction, computational modeling, finite-element method, asymptotic averaging method, periodicity cell, stress concentration tensor, strength criteria, damageAbstract
A mathematical model of failure of textile composite materials is proposed. The model is based on the asymptotic averaging method and the application of the finite-element method to solving local problems in the periodicity cell. As a criterion of the matrix strength, the modified Pisarenko–Lebedev model is used. As a criterion of the reinforcing fiber strength, the two-level damage model for a monofiber bundle is applied. The model developed allows us to forecast the propagation of micro-destruction in the periodicity cell of a composite under varying load combinations. Computational results show the possibilities of the developed model for numerical investigation of micro-destruction of textile composites.
Downloads
References
Tarnopol’skij U.M., Zigun I.G., Polakov V.A. Prostranstvenno-armirovannye kompozicionnye materialy: Spravocnik - M.: Masinostroenie, 1987. - 224 s.
2. Tkanye konstrukcionnye kompozity / Pod red. C.-V. Cou i F.K. Ko. - M.: Mir, 1991. - 432 s.
3. Dimitrienko Yu.I. Modelling of mechanical properties of composite materials at high temperatures. Part 3. Textile composites // Appl. Compos. Mater. - 1998. - V. 5, N. 4. - P. 257-272. DOI
4. Dimitrienko U.I. Mehanika kompozicionnyh materialov pri vysokih temperaturah. - M.: Masinostroenie, 1997. - 368 s.
5. Diksit A., Mali H.S. Obzor sposobov modelirovania tekstil’no-tkanevyh kompozitov dla prognozirovania ih mehaniceskih svojstv // Mehanika kompozitnyh materialov. - 2013. - T. 49, No 1. - S. 3-30.
6. Cao J., Akkerman R., Boisse P. et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results // Compos. Part A-Appl. S. - 2008. - V. 39, N. 6. - P. 1037-1053. DOI
7. Cox B.N., Flanagan G. Handbook of analytical methods for textile composites // NASA Contractor Report 4750. - 1997. - 161 p. (URL: htpp://www.butecom.com/docs/kutuphane/Textile_Composites.pdf).
8. Vil’deman V.E., Sokolkin U.V., Taskinov A.A. Mehanika neuprugogo deformirovania i razrusenia kompozicionnyh materialov. - M.: Nauka. Fizmatlit, 1997. - 288 s.
9. Vanaerschot A., Cox B.N., Lomov S.V., Vandepitte D. Mechanical property evaluation of polymer textile composites by multi-scale modelling based on internal geometry variability // Proceedings of ISMA2012-USD2012. - P. 5043-5054. (URL: http://www.isma-isaac.be/publications/PMA_MOD_publications/ISMA2012/isma2012_0747.pdf).
10. Lomov S.V., Verpoest I., Cichosz J. et al. Meso-level textile composites simulations: Open data exchange and scripting // J. Compos. Mater. - 2013. - V. 20. DOI
11. Abdiwi F., Harrison P., Koyama I. et al. Characterising and modelling variability of tow orientation in engineering fabrics and textile composites // Compos. Sci. Technol. - 2012. - V. 72, N. 9. - P. 1034-1041. DOI
12. Blinzler B.J., Goldberg R.K., Binienda W.K. Macroscale independently homogenized subcells for modeling braided composites // AIAA J. - 2012. - V. 50, N. 9. - P. 1873-1884. DOI
13. Nali P., Carrera E. A numerical assessment on two-dimensional failure criteria for composite layered structures // Compos. Part B-Eng. - 2012. - V. 43, N. 2. - P. 280-289. DOI
14. Hage Ch.E., Younes R., Aboura Z. et al. Analytical and numerical modeling of mechanical properties of orthogonal 3D CFRP // Compos. Sci. Technol. - 2009. - V. 69, N. 1. - P. 111-116. DOI
15. Nemecek J., Kralik V., Vondrejc J. Micromechanical analysis of heterogeneous structural materials // Cement Concrete Comp. - 2013. - V. 36, N. 1. - P. 85-92. DOI
16. Burks B., Middleton J., Kumosa M. Micromechanics modeling of fatigue failure mechanisms in a hybrid polymer matrix composite // Compos. Sci. Technol. - 2012. - V. 72, N. 15. - P. 1863-1869. DOI
17. Abe D., Bacarreza O., Aliabadi M.H. Micromechanical modeling for the evaluation of elastic moduli of woven composites // Key Eng. Mat. - 2012. - V. 525-526. - P. 73-76. DOI
18. Novak J. Kaczmarczyk L., Grassl P. et al. A micromechanics-enhanced finite element formulation for modeling heterogeneous materials // Comput. Method. Appl. M. - 2012. - V. 201-204. - P. 53-64. DOI
19. Tran T.D., Kelly D., Prusty B.G. et al. Micromechanical modeling for onset of distortional matrix damage of fiber reinforced composite materials // Compos. Struct. - 2012. - V. 94, N. 2. - P. 745-757. DOI
20. Karkkainen R.L., Tzeng J.T. Micromechanical strength modeling and investigation of stitch density effects on 3D orthogonal composites // J. Compos. Mater. - 2009. - V. 43, N. 25. - P. 3125-3142. DOI
21. Hettich T., Hund A., Ramm E. Modeling of failure in composites by X-FEM and level sets within a multiscale framework // Comput. Method. Appl. M. - 2008. - V. 197, N. 5. - P. 414-424. DOI
22. Buchanan D.L., Gosse J.H., Wollschlager J.A. et al. Micromechanical enhancement of the macroscopic strain state for advanced composite materials // Compos. Sci. Technol. - 2009. - V. 69, N. 11-12. - P. 1974-1978. DOI
23. Li L.Y., Wen P.H., Aliabadi M.H. Meshfree modeling and homogenization of 3D orthogonal woven composites // Compos. Sci. Technol. - 2011. - V. 71, N. 15. - P. 1777-1788. DOI
24. Il’inyh A.V., Vil’deman V.E. Modelirovanie struktury i processov razrusenia zernistyh kompozitov // Vycisl. meh. splos. sred. - 2012. - T. 5, No 4. - S. 443-451. DOI
25. Tashkinov M., Wildemann V., Mikhailova N. Method of successive approximations in stochastic elastic boundary value problem for structurally heterogenous materials // Comp. Mater. Sci. - 2012. - V. 52, N. 1. - P. 101-106. DOI
26. Makarova E.U., Sokolkin U.V., Cekalkin A.A. Strukturno-fenomenologiceskie modeli prognozirovania uprugih svojstv vysokoporistyh kompozitov // Vestn. Sam. Gos. tehn. un-ta. Ser.: Fiz.-mat. nauki. - 2010. - No 5(21). - S. 276-279.
27. Bahvalov N.S., Panasenko G.P. Osrednenie processov v periodiceskih sredah. - M.: Nauka, 1984. - 352 c.
28. Pobedra B.E. Mehanika kompozicionnyh materialov. - M.: Izd-vo MGU, 1984. - 336 s.
29. Sances-Palensia E. Neodnorodnye sredy i teoria kolebanij. - M.: Mir, 1984. - 472 s.
30. Bardzokas D.I., Zobnin A.I. Matematiceskoe modelirovanie fiziceskih processov v kompozicionnyh materialah periodiceskoj struktury. - M.: Editorial URSS, 2003. - 376 c.
31. Dimitrienko Y.I., Sokolov A.P. Elastic properties of composite materials // Mathematical Models and Computer Simulations. - 2010. - V. 2, N. 1. - P. 116-130. DOI
32. Dimitrienko U.I., Sokolov A.P. Razrabotka avtomatizirovannoj tehnologii vycislenia effektivnyh uprugih harakteristik kompozitov metodom asimptoticeskogo osrednenia // Vestnik MGTU im. N.E. Baumana. Seria: Estestvennye nauki. - 2008. - No 2. - S. 56-67.
33. Dimitrienko U.I., Sokolov A.P. Sistema avtomatizirovannogo prognozirovania svojstv kompozicionnyh materialov // Informacionnye tehnologii. - 2008. - No 8. - S. 31-38.
34. Dimitrienko U.I., Sokolov A.P. Mnogomasstabnoe modelirovanie uprugih kompozicionnyh materialov // Matem. modelirovanie. - 2012. - T. 24, No 5. - S. 3-20.
35. Dimitrienko U.I., Dubrovina A.U., Sokolov A.P. Modelirovanie ustalostnyh harakteristik kompozicionnyh materialov na osnove metoda asimptoticeskogo osrednenia i <> kriteria dlitel’noj procnosti // Vestnik MGTU im. N.E. Baumana. Seria: Estestvennye nauki. - 2011. - SPEC. - S. 34-49.
36. Dimitrienko U.I., Sokolov A.P. Cislennoe modelirovanie kompozicionnyh materialov s mnogourovnevoj strukturoj // Izvestia RAN. Seria fiziceskaa. - 2011. - T. 75, No 11. - S. 1549-1554.
37. Dimitrienko U.I., Morozov A.N., Sokolov A.P., Nicegovskij E.S. Modelirovanie effektivnyh p’ezoelektrouprugih kompozicionnyh materialov // Vestnik MGTU im. N.E. Baumana. Seria: Estestvennye nauki. - 2010. - No 3. - S. 86-96.
38. Dimitrienko U.I., Nicegovskij E.S. Cislennoe modelirovanie magnitnyh svojstv kompozicionnyh materialov // Vestnik MGTU im. N.E. Baumana. Seria: Estestvennye nauki. - 2010. - No 1. - S. 3-12.
39. Dimitrienko U.I. Mehanika splosnoj sredy: Ucebn. posobie. - M.: Izd-vo MGTU im. N.E. Baumana, 2013. - T. 4. Osnovy mehaniki tverdyh sred. - 624 s.
40. Pisarenko G.S., Lebedev A.A. Deformirovanie i procnost’ materialov pri sloznom naprazennom sostoanii. - Kiev: Naukova dumka. - 1976. - 416 s.
41. Dimitrienko U.I. Mehanika splosnoj sredy: Ucebn. posobie. - M.: Izd-vo MGTU im. N.E. Baumana, 2011. - T. 1. Tenzornyj analiz. - 464 s.
42. Dimitrienko U.I. Nelinejnaa mehanika splosnoj sredy. - M.: Fizmatlit, 2009. - 624 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.