Thermo-elastic-plastic processes with finite deformations
DOI:
https://doi.org/10.7242/1999-6691/2013.6.3.42Keywords:
thermo-elastic-plastic, kinematics, constitutive relations, thermodynamics, structural changesAbstract
In this paper, thermo-elastic-plastic processes are described using author's approach, which is based on the superposition of small deformations on the finite ones. This allows us to construct models of complex media in the framework of finite deformations taking into account the peculiarities of their thermo-elastic-plastic behavior including structural changes occurring in the material.
Downloads
References
Novoksanov R.S., Rogovoj A.A. O postroenii evolucionnyh opredelausih sootnosenij dla konecnyh deformacij // MTT. - 2002. - No 4. - C. 77-95.
2. Novoksanov R.S., Rogovoj A.A. Evolucionnye opredelausie sootnosenia dla konecnyh vazkouprugih deformacij // MTT. - 2005. - No 4. - C. 122-140.
3. Rogovoj A.A. Opredelausie sootnosenia dla konecnyh uprugo-neuprugih deformacij // PMTF. - 2005. - T. 46, No 5. - S. 138-149.
4. Rogovoj A.A. Termodinamika uprugo-neuprugogo processa pri konecnyh deformaciah // PMTF. - 2007. - T. 48, No 4. - S. 144-153.
5. Rogovoj A.A. Kinematika uprugo-neuprugogo processa pri konecnyh deformaciah // PMTF. - 2008. - T. 49, No 1. - S. 165-172.
6. Rogovoj A.A. Kinematika i termodinamika uprugo-neuprugogo processa pri konecnyh deformaciah // Elektronnyj zurnal <>. - 2008. - T. 7. (URL: http://chemphys.edu.ru/article/105/).
7. Rogovoy A.A. Formalized approach to construction of the state equations for complex media under finite deformations // Continuum Mech. Therm. - 2012. - V. 24, N. 2. - P. 81-114. DOI
8. Trusdell K. Pervonacal’nyj kurs racional’noj mehaniki splosnyh sred. - M.: Mir, 1975. - 592 s.
9. Gantmaher F.R. Teoria matric. - M.: Nauka, 1988. - 552 s.
10. Lankaster P. Teoria matric. - M.: Nauka, 1978. - 280 s.
11. Hodowany J., Ravichandran G., Rosakis A.J., Rosakis P. On the partition of plastic work into heat and stored energy in metals. Part I: Experiments // GALCIT Technical Report SM No 98-7, California Institute of Technology, Pasadena, CA. - 1998.
12. Rosakis P., Rosakis A.J., Ravichandran G., Hodowany J. A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals // J. Mech. Phys. Solids. - 2000. - V. 48, N. 3. - P. 581-607. DOI
13. Rogovoy A.A. Large elastic-plastic deformations in the technological process of rotary forming of cylindrical workpieces // Metallurgy and Foundry Engineering. - 1994. -V. 20, N. 3. - P. 343-350.
14. Rogovoy A.A., Ivanov B.P. Displacement formulation of the friction conditions on the contact surface // Comput. Struct. - 1997. - V. 62, N. 1. - P. 133-139. DOI
15. Nagtegaal J.C. On the implementation of inelastic constitutive equations with special reference to large deformation problems // Comput. Method. Appl. M. - 1982. - V. 33, N. 1-3. - P. 469-484. DOI
16. Rogovoy A.A. The stress recovery procedure for the finite element method // Comput. Struct. - 1997. - V. 63, N. 6. - P. 1121-1137. DOI
17. Rogovoj A.A., Stolbova O.S. Procedura vospolnenia naprazenij pri resenii geometriceski nelinejnyh zadac mehaniki deformiruemogo tverdogo tela metodom konecnyh elementov // PMM. - 2010. - T. 74, No 6. - S. 992-1008. (Rogovoi A.A., Stolbova O.S. A stress recovery procedure for solving geometrically non-linear problems in the mechanics of a deformable solid by the finite element method // Journal of Applied Mathematics and Mechanics. - 2010. - T. 74, N. 6. - P. 710-720.) DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.