Non-linear waves in coaxial cylinder shells containing viscous liquid inside with consideration for energy dispersion
DOI:
https://doi.org/10.7242/1999-6691/2013.6.3.38Keywords:
non-linear waves, coaxial cylinder shells, energy dispersion, incompressible liquidAbstract
The equations which describe the strain waves by means of asymptotic methods of solving the hydro-elastic problem that includes the dynamic equations of two coaxial geometrically and physically nonlinear elastic shells are obtained. Energy dissipation and equations for an incompressible viscous fluid between cylindrical shells with appropriate boundary conditions are taken into account. Two cases are considered: one with structural damping in the material of shells, and the other with the viscoelastic material of the shell. Both cases lead to the same equations, which generalize the well-known modified Korteweg-de Vries–Burgers equations by introducing the term describing the liquid impact between the shells. The radius of the medial surface of the shell is significantly smaller than the wavelength of deformation, and therefore the asymptotic transition to the classical equation of hydrodynamic lubrication theory is made in the equations of viscous incompressible fluid. The presence of fluid between the co-axial shells gives rise to deformation waves not only in the outer shell but also in the inner one, where the initial deformation moment is equal to zero. Hence, the deformation wave of stable amplitude and velocity takes place. This fact is in accordance with the solitary wave solution, which cannot be described analytically. The construction under consideration can be characterized as a three layered packet, with liquid as a filler.
Downloads
References
Zemlanuhin A.I., Mogilevic L.I. Nelinejnye volny deformacij v cilindriceskih obolockah // Izv. Vuzov. PND. - 1995. - T. 3, No 1. - S. 52-58.
2. Erofeev V.I., Klueva N.V. Solitony i nelinejnye periodiceskie volny deformacii v sterznah, plastinah i obolockah (obzor) // Akusticeskij zurnal. - 2002. - T. 48, No 6. - S. 725-740.
3. Zemlanuhin A.I., Mogilevic L.I. Nelinejnye volny v neodnorodnyh cilindriceskih obolockah: novoe evolucionnoe uravnenie // Akusticeskij zurnal. - 2001. - T. 47, No 3. - S. 359-363.
4. Arsinov G.A., Zemlanuhin A.I., Mogilevic L.I. Dvumernye uedinennye volny v nelinejnoj vazkouprugoj deformiruemoj srede // Akusticeskij zurnal. - 2000. - T. 46, No 1. - S. 116-117.
5. Bockarev S.A. Sobstvennye kolebania vrasausejsa krugovoj cilindriceskoj obolocki s zidkost’u // Vycisl. meh. splos. sred. - 2010. - T. 3, No 2. - S. 24-33. DOI
6. Lekomcev S.V. Konecno-elementnye algoritmy rasceta sobstvennyh kolebanij trehmernyh obolocek // Vycisl. meh. splos. sred. - 2012. - T. 5, No 2. - S. 233-243. DOI
7. Bockarev S.A., Matveenko V.P. Ustojcivost’ koaksial’nyh cilindriceskih obolocek, soderzasih vrasausijsa potok zidkosti // Vycisl. meh. splos. sred. - 2013. - T. 6, No 1. - S. 94-102. DOI
8. Lojcanskij L.G. Mehanika zidkosti i gaza. - M.: Drofa, 2003. - 840 s.
9. Kauderer G. Nelinejnaa mehanika. - M.: Izd-vo inostrannoj literatury, 1961. - 778 s.
10. Vol’mir A.S. Obolocki v potoke zidkosti i gaza. Zadaci gidrouprugosti. - M.: Nauka, 1979. - 320 s.
11. Civilihin S.A., Popov I.U., Gusarov V.V. Dinamika skrucivania nanotrubok v vazkoj zidkosti // DAN. - 2007. - T. 412, No 2. - S. 201-203.
12. Popov U.I., Rozygina O.A., Civilihin S.A., Gusarov V.V. Solitony v stenke nanotrubki i stoksovo tecenie v nej. // PZTF. - 2010. - T. 36, No 18. - S. 42-54.
13. Erofeev V.I., Zemlanuhin A.I., Katson V.M., Sesenin S.F. Formirovanie solitonov deformacii v kontinuume Kossera so stesnennym vraseniem // Vycisl. meh. splos. sred. - 2009. - T. 2, No 4. - C. 67-75. DOI
14. Bagdoev A.G., Erofeev V.I., Sekoan A.V. Linejnye i nelinejnye volny v dispergiruusih splosnyh sredah. - M.: Fizmatlit, 2009. - 318 s.
15. Moskvitin V.V. Soprotivlenie vazko-uprugih materialov. - M.: Nauka, 1972. - 328 s.
16. Blinkov U.A., Mozzilkin V.V. Generacia raznostnyh shem dla uravnenia Burgersa postroeniem bazisov Grebnera // Programmirovanie. 2006. - T. 32, No 2. - S. 71-74. (Blinkov Yu.A., Mozzhilkin V.V. Generation of difference schemes for the burgers equation by constructing Grobner bases // Program. Comput. Soft+. - 2006. - V. 32, N. 2. - P. 114-117.) DOI
17. Gerdt V.P., Blinkov Yu.A., Mozzhilkin V.V. [Elektronnyj resurs] Grobner bases and generation of difference schemes for partial differential equations // SIGMA. - 2006. - V. 2. - 26 p. DOI
18. Gerdt V.P., Blinkov Yu.A. Involution and difference schemes for the Navier-Stokes equations // Computer Algebra in Scientific Computing. Lecture Notes in Computer Science. - 2009. - V. 5743. - P. 94-105. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.